\(-a=b+c\Rightarrow a^2=b^2+2bc+c^2\)
\(\left\{{}\begin{matrix}a+c=-b\\a+b=-c\end{matrix}\right.\)
\(a^2=2\left(a+c+1\right)\left(a+b-1\right)\)
\(\Leftrightarrow b^2+2bc+c^2=2\left(1-b\right)\left(-c-1\right)\)
\(\Leftrightarrow b^2+2bc+c^2=2bc+2b-2c-2\)
\(\Leftrightarrow b^2-2b+1+c^2+2c+1=0\)
\(\Leftrightarrow\left(b-1\right)^2+\left(c+1\right)^2=0\)
\(\Leftrightarrow\left\{{}\begin{matrix}b=1\\c=-1\end{matrix}\right.\) \(\Rightarrow a=0\)
\(\Rightarrow A=2\)