Cho a+b/a-b=c+d/c-d. Cm a/b=c/d
Cho a+b/a-b = c+d/c-d . CMR : a/b = c/d
cho a/b, c/d biết a/b<c/d vafb,d>0. CMR
a) ad<bc
b)a/b< a+c/b+d<c/d
Cho hai phân số \(\dfrac{a}{b}\) và \(\dfrac{c}{d}\) thỏa mãn b, d > 0 và \(\dfrac{a}{b}\) < \(\dfrac{c}{d}\). Chứng minh rằng \(\dfrac{a}{b}< \dfrac{a+c}{b+d}< \dfrac{c}{d}\)
Cho (a + c)(b - d) = (a - c)(b + d)
Chứng minh rằng:a/b=c/d
Cho a/d < a/b < 1 a,b,c,d là những số nguyên dương .
So sánh a/b với a+d / b+c
c/d với a+d / b+c
Cho \(\frac{a+b+c-d}{d}=\frac{b+c+d-a}{a}=\frac{c+d+a-b}{b}=\frac{d+a+b-d}{c}\)(với đk a+b+c+d khác 0) . Tính giá trị bthuc:
\(P=\left(1+\frac{b+c}{a}\right).\left(1+\frac{c+d}{b}\right).\left(1+\frac{d+a}{c}\right).\left(1+\frac{a+b}{d}\right)\)
cho a;b;c;d là các số thực khác 0 thỏa mãn
\(\dfrac{a-b+c+d}{b}=\dfrac{a+b-c+d}{c}=\dfrac{a+b+c-d}{d}=\dfrac{b+c+d-a}{a}\)
tính giá trị của biểu thức
\(M=\dfrac{\left(a+b+c\right)\left(a+b+d\right)\left(b+c+d\right)\left(c+d+a\right)}{abcd}\)
Cho 5 số a ; b; c ; d ;e biết : ab = bc = cd = de = ea . Cm : a = b = c = d = e
Cho 2 số hữu tỉ a/b và c/d và b,a>0 trong đó a/b<c/d CMR : a) ad<bd ; b) a/b<a+c/b+c<c/d