a,Tìm x,y,z biết: \(\dfrac{y+z+1}{x}\)=\(\dfrac{x+z+2}{y}\)=\(\dfrac{x+y-3}{z}\)=\(\dfrac{1}{x+y+z}\)
b,Cho \(\dfrac{a}{b}\)=\(\dfrac{b}{c}\)=\(\dfrac{c}{d}\). Chứng minh rằng: (\(\dfrac{a+b+c}{b+c+d}\))3=\(\dfrac{a}{d}\)
c,Cho \(\dfrac{a}{b}\)=\(\dfrac{c}{d}\). Chứng minh rằng: \(\dfrac{5a+3b}{5c+3d}\)=\(\dfrac{5a-3b}{5c-3d}\)
d,Cho \(\dfrac{3x-2y}{4}\)=\(\dfrac{2z-4x}{3}\)=\(\dfrac{4y-3z}{2}\).Chứng minh rằng: \(\dfrac{x}{2}\)=\(\dfrac{y}{3}\)=\(\dfrac{z}{4}\)
Cho a/b=c/d
a) c/a-c=b/b-d
b) a/c=a+b/c+d
C) 2.a + 3+a/2.b + 3.d= 2.a -3.c/ 2.b-3.d
Từ tỉ lệ thức a/b=c/d (a,b,c,d khác 0;a khác \(\pm b\);c\(\ne\)\(\pm d\)) hãy suy ra các tỉ lệ thức sau:
a,\(\dfrac{a+b}{b}\) = \(\dfrac{c+d}{d}\)
b,\(\dfrac{a-b}{b}\) = \(\dfrac{c-d}{d}\)
c,\(\dfrac{a+b}{a}\) = \(\dfrac{c+d}{c}\)
d,\(\dfrac{a-b}{a}\) =\(\dfrac{c-d}{c}\)
e,\(\dfrac{a}{a+b}=\dfrac{c}{c+d}\)
f,\(\dfrac{a}{a-b}=\dfrac{c}{c-d}\)
B1: Cho 9 số: \(-2;-4;-6;-8;-10;-12;-14;-16;-18\). Điền các số vào hình vuông \(3x3\) để tổng của mỗi hàng ngang, hàng dọc, đường chéo đều bằng nhau?
B2: Cho \(\frac{a}{b}=\frac{c}{d}\). Chứng minh rằng:
a) \(\frac{a-b}{b}=\frac{c-d}{d}\)
b) \(\frac{a\cdot b}{c\cdot d}=\frac{\left(a+b\right)^2}{\left(c+d\right)^2}\)
B3: Tìm \(x;y;z\) biết
a) \(\frac{4}{x+1}=\frac{2}{y-2}=\frac{3}{z+2};x\cdot y\cdot z=12\)
b) \(\frac{y^2-x^2}{3}=\frac{x^2+y^2}{5};x^{10}\cdot y^{10}=1024\)
Câu 1 : Cho a, b, c, d ϵ Z ; b là TB cộng của a và c
và \(\dfrac{1}{c}=\dfrac{1}{2}\left(\dfrac{1}{b}+\dfrac{1}{d}\right)\)
CMR a,b,c,d lập được thành 1 tỉ lệ thức
Câu 2 : Cho \(a_1\cdot a_3=a^2_2\) ; \(a_2\cdot a_4=a^2_3\)
CMR \(\dfrac{a_1^3+a^3_2+a_3^3}{a_2^3+a_3^3+a^3_4}=\dfrac{\left(a_1+a_2+a_3\right)^3}{\left(a_2+a_3+a_4\right)}=\dfrac{a_1}{a_4}\)
Câu 3 : Cho :
\(\dfrac{xn-ym}{p^2}=\dfrac{yp-zn}{m^2}=\dfrac{mz-xp}{n^2}\)
CMR x,y,z tỉ lệ với m,n,p
Cho a/b=c/d chứng minh rằng:
a)a/a-b=c/c-d
b)a/b=a+c/b+d
c) a/3a+b=c/3c+d
d)a.c/bd=a2+c2/b2+d2
e)a.b/c.d=a2-b2/c2-d2
f)a.b/cd=(a-b)2/(c-d)2
/ là phần nhé
cho\(\frac{a}{b}=\frac{b}{c}=\frac{c}{d}=\frac{d}{a}\)
Tính : M=\(\frac{2\times a-b}{c+d}+\frac{2\times b-c}{d+a}+\frac{2\times c-d}{a+b}+\frac{2\times d-a}{b+c}\)
Từ tỉ lệ thức \(\dfrac{a}{b}=\dfrac{c}{d};\left(a,b,c,d\ne0;a\ne\pm b;c\ne\pm d\right)\), hãy suy ra các tỉ lệ thức sau :
a) \(\dfrac{a+b}{b}=\dfrac{c+d}{d}\)
b) \(\dfrac{a-b}{b}=\dfrac{c-d}{d}\)
c) \(\dfrac{a+b}{a}=\dfrac{c+d}{c}\)
d) \(\dfrac{a-b}{a}=\dfrac{c-d}{c}\)
e) \(\dfrac{a}{a+b}=\dfrac{c}{c+d}\)
f) \(\dfrac{a}{a-b}=\dfrac{c}{c-d}\)
Tính
N=\(\dfrac{2a+b+c+d}{a}=\dfrac{a+2b+c+d}{b}=\dfrac{a+b+2c+d}{c}=\dfrac{a+b+c+2d}{d}\)
Biết
N=\(\dfrac{a+b}{c+d}+\dfrac{b+c}{d+a}+\dfrac{c+d}{a+b}+\dfrac{d+a}{b+c}\)
GIẢI ĐƯỢC BẰNG HAI CÁCH THÌ CÀNG TỐT