Bài 7: Tứ giác nội tiếp

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Sách Giáo Khoa

Cho ABCD là một tứ giác nội tiếp đường tròn tâm M, biết \(\widehat{DAB}=80^o,\widehat{DAM}=30^o;\widehat{BMC}=70^o.\)

Hãy tính số đo các góc \(\widehat{MAB};\widehat{BCM};\widehat{AMB};\widehat{DMC};\widehat{AMD};\widehat{MCD}\) và \(\widehat{BCD}.\)

Quang Duy
11 tháng 4 2017 lúc 16:32

Ta có: = - = 80o – 30o = 50o (1)

- ∆MBC là tam giác cân (MB= MC) nên = = 55o (2)

- ∆MAB là tam giác cân (MA=MB) nên = 50o (theo (1))

Vậy = 180o – 2. 50o = 80o

= sđcung BCD (số đo góc nội tiếp bằng nửa số đo của cung bị chắn)

=> sđ cung BCD = 2 = 2. 80o = 160o

Mà sđ cung BC = = 70o (số đo ở tâm bằng số đo cung bị chắn)

Vậy cung DC = 160o – 70o = 90o (vì C nằm trên cung nhỏ cung BD)

Suy ra = 90o (4)

∆MAD là tam giác cân (MA= MD)

Suy ra = 180o – 2.30o = 120o (5)

∆MCD là tam giác vuông cân (MC= MD) và = 90o

Suy ra = = 45o (6)

= 100o theo (2) và (6) và vì CM là tia nằm giữa hai tia CB, CD



Đặng Phương Nam
11 tháng 4 2017 lúc 17:57

Ta có: = - = 80o – 30o = 50o (1)

- ∆MBC là tam giác cân (MB= MC) nên = = 55o (2)

- ∆MAB là tam giác cân (MA=MB) nên = 50o (theo (1))

Vậy = 180o – 2. 50o = 80o

= sđcung BCD (số đo góc nội tiếp bằng nửa số đo của cung bị chắn)

=> sđ cung BCD = 2 = 2. 80o = 160o

Mà sđ cung BC = = 70o (số đo ở tâm bằng số đo cung bị chắn)

Vậy cung DC = 160o – 70o = 90o (vì C nằm trên cung nhỏ cung BD)

Suy ra = 90o (4)

∆MAD là tam giác cân (MA= MD)

Suy ra = 180o – 2.30o = 120o (5)

∆MCD là tam giác vuông cân (MC= MD) và = 90o

Suy ra = = 45o (6)

= 100o theo (2) và (6) và vì CM là tia nằm giữa hai tia CB, CD




Các câu hỏi tương tự
TFBoys
Xem chi tiết
Sách Giáo Khoa
Xem chi tiết
Sách Giáo Khoa
Xem chi tiết
Sách Giáo Khoa
Xem chi tiết
Sách Giáo Khoa
Xem chi tiết
Sách Giáo Khoa
Xem chi tiết
Minh Hoàng Nguyễn
Xem chi tiết
Trương Nguyên Đại Thắng
Xem chi tiết
그녀는 숙이다
Xem chi tiết