\(\left(a+b+c+d\right)\left(a-b-c+d\right)=\left(a-b+c-d\right)\left(a+b-c-d\right)\)
\(\left(a+d\right)^2-\left(b+c\right)^2=\left(a-d\right)^2-\left(b-c\right)^2\)
\(\left(a+d\right)^2-\left(a-d\right)^2=\left(b+c\right)^2-\left(b-c\right)^2\)
\(\left(a+d-a+d\right)\left(a+d+a-d\right)=\left(b+c-b+c\right)\left(b+c+b-c\right)\)
\(2d\times2a=2b\times2c\)
\(ad=bc\)
\(\frac{a}{c}=\frac{b}{d}\left(\text{đ}pcm\right)\)