Cho mình hỏi các hằng đẳng thức này có tên là gì vậy:
a, (a+b+c)^3 = a^2 + b^2 + c^2 + 2ab + 2bc + 2ca
b, (a+b)^4 = a^4 + 4a^3b + 6a^2b^2 + 4ab^3 + b^4
c, (a+b)^5 = a^5 + 5a^4b + 10a^3b^2 + 10a^2b^3 + 5ab^4 + b^5
1,Cm các đẳng thức sau
a,a(b-c)-b(a+c)+c(a-b)=-2bc
b,a(1-b)+a(a2-1)=a(a2-b)
c,a(b-x)+x(a+b)=b(a+x)
2,Cm
(3a+2b-1)(a+5)-2b(a-2)=(3a+5)(a+3)+2(7b-10)
3,Cho f(x)=3x2-x+1 và g(x)=x-1
a,Tính f(x).g(x)
b,Tìm x để f(x).g(x)+x^2[3.g(x)]=5/2
cho a, b, c thỏa mãn : \(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}=0\)
tính C = \(\dfrac{a^2}{a^2+2bc}+\dfrac{b^2}{b^2+2ac}+\dfrac{c^2}{c^2+2ab}\)
CMR: nếu a+b+c=2p thì b^2+c^2+2bc-a^2=4p(p-a)
Cho a, b, c độ dài 3 cạnh của một tam giác. Chứng minh rằng a2 + 2bc > b2 + c2
Rút gọn \(B=\left(1+\frac{b^2+c^2-a^2}{2bc}\right).\frac{1+\frac{a}{b+c}}{1-\frac{a}{b+c}}\times\frac{b^2+c^2-\left(b-c\right)^2}{a+b+c}\)
toán lớp 8 có các hằng đẳng thức này không?
a)(a+b+c)2 =a2+b2+c2+2ab-2bc-2ac
b)(a-b-c)2 =a2+b2+c2-2ab+2bc-2ac
c)(a-b)2= -(b-a)3
d) a2+b2=(a+b)2 -2ab
Phân tích đa thức thành nhân tử
a) a2(b - c) + b2(c -a) + c2(a - b)
b) 1 - 2a + 2bc + a2- b2- c2
1. Cho a+b+c=a^2+b^2+c^2=1 và a/x=b/y=c/z
Cm: xy+yz+zx=0
2.Cho x/a+y/b+z/c=1 và a/x^2+b/y^2+c/z^2=0
Tính: A=x^2/a^2+y^2/b^2+z^2/c^2
3.Tìm a,b biết:(a-1)^2+(b-1)^2=10a+b
và 0<a<10; -1<b<10