Chương 4: BẤT ĐẲNG THỨC, BẤT PHƯƠNG TRÌNH

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Neet

Cho a,b,c>0.Cmr

\(\dfrac{a}{b}+\dfrac{b}{c}+\dfrac{c}{a}\ge\dfrac{a+b}{b+c}+\dfrac{b+c}{a+b}+1\)

Hung nguyen
7 tháng 8 2017 lúc 10:17

Ta có:

\(\dfrac{a}{b}+\dfrac{b}{c}+\dfrac{c}{a}+1=\dfrac{a^2}{ab}+\dfrac{b^2}{bc}+\dfrac{c^2}{ca}+\dfrac{b^2}{b^2}\)

\(\ge\dfrac{\left(a+2b+c\right)^2}{ab+bc+ca+b^2}=\dfrac{\left(a+b\right)^2+2\left(a+b\right)\left(b+c\right)+\left(b+c\right)^2}{\left(a+b\right)\left(b+c\right)}\)

\(=\dfrac{a+b}{b+c}+\dfrac{b+c}{a+b}+2\)

Sorry bác Neet tới đây e bí mất khocroi

Đào Ngọc Hoa
5 tháng 8 2017 lúc 13:26

Ta có: \(\dfrac{a}{b}+\dfrac{b}{c}+\dfrac{c}{a}\ge3.\sqrt[3]{\dfrac{a}{b}.\dfrac{b}{c}.\dfrac{c}{a}}=3\)(1)

\(\dfrac{a+b}{b+c}+\dfrac{b+c}{a+b}\ge2.\sqrt{\dfrac{a+b}{b+c}.\dfrac{b+c}{a+b}}=2\)

\(\Leftrightarrow\dfrac{a+b}{b+c}+\dfrac{b+c}{a+b}+1\ge3\)(2)

Từ (1), (2), ta có: \(\dfrac{a}{b}+\dfrac{b}{c}+\dfrac{c}{a}-\dfrac{a+b}{b+c}-\dfrac{b+c}{a+b}-1\ge0\)

\(\Leftrightarrow\dfrac{a}{b}+\dfrac{b}{c}+\dfrac{c}{a}\ge\dfrac{a+b}{b+c}+\dfrac{b+c}{a+b}+1\)

Dấu "=" xảy ra khi \(a=b=c\)


Các câu hỏi tương tự
Kimian Hajan Ruventaren
Xem chi tiết
Kimian Hajan Ruventaren
Xem chi tiết
Kimian Hajan Ruventaren
Xem chi tiết
trần thảo lê
Xem chi tiết
vung nguyen thi
Xem chi tiết
Neet
Xem chi tiết
vung nguyen thi
Xem chi tiết
vung nguyen thi
Xem chi tiết
vvvvvvvv
Xem chi tiết