Cho a , b , c > 0 . Chứng minh rằng :
\(\sqrt{\dfrac{a}{b+c}}+\sqrt{\dfrac{b}{c+a}}+\sqrt{\dfrac{c}{a+b}}>2\)
Cho a>0,b>0,c>0. Chứng minh \(\sqrt{\dfrac{a}{b+c}}+\sqrt{\dfrac{b}{a+c}}\sqrt{\dfrac{c}{a+b}}\ge2\)
cho a,b,c thỏa \(\left\{{}\begin{matrix}a,b,c>0\\\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}=1\end{matrix}\right.\) chứng minh rằng\(\sqrt{a+bc}+\sqrt{b+ca}+\sqrt{c+ab}\ge\sqrt{abc}+\sqrt{a}+\sqrt{b}+\sqrt{\sqrt{c}}\)
Chứng minh rằng với ba số dương a, b, c ta luôn có:\(\dfrac{a}{a\:+\:b}\:+\dfrac{b}{b\:+\:c}\:+\:\dfrac{c}{c\:+\:a}\:< \:\sqrt{\dfrac{c}{a\:+\:b}\:}\:+\:\sqrt{\dfrac{b}{c\:+\:a}}\:+\:\sqrt{\dfrac{a}{b\:+\:c}}\)
Cho ba số thực dương \(a;b;c\) thỏa mãn \(a^2+b^2+c^2=3\) . Chứng minh rằng :
\(\dfrac{a}{\sqrt{a^2+b+c}}+\dfrac{b}{\sqrt{b^2+a+c}}+\dfrac{c}{\sqrt{c^2+b+a}}\le\sqrt{3}\)
P/s: Em xin phép nhờ sự giúp đỡ và gợi ý của quý thầy cô giáo và các bạn yêu toán ạ!
Cho 3 số dương a, b, c thoã mãn a+b+c=1. Chứng minh rằng:
\(\sqrt{\dfrac{ab}{c + ab}} + \sqrt{\dfrac{bc}{a + bc}} + \sqrt{\dfrac{ca}{b + ac}} ≤ \dfrac{3}{2}\)
1/ Cho a,b>0 , thỏa mãn ab = 1. Chứng minh rằng:
\(\dfrac{a}{\sqrt{b+2}}+\dfrac{b}{\sqrt{a+2}}+\dfrac{1}{\sqrt{a+b+ab}}\ge\sqrt{3}\)
2/ Cho a>0. Chứng minh rằng:
a+\(\dfrac{1}{a}\ge\sqrt{\dfrac{1}{a^2+1}}+\sqrt{1+\dfrac{1}{a^2+1}}\)
3/ Cho a, b>0. Chứng minh rằng:
2(a+b)\(\le1+\sqrt{1+4\left(a^3+b^3\right)}\)
Cho các số thực dương \(a;b;c\) và thỏa mãn: \(a+b+c=1\). Chứng minh rằng :
\(\dfrac{a}{a+2.\sqrt{a+bc}}+\dfrac{b}{b+2.\sqrt{b+ac}}+\dfrac{c}{c+2.\sqrt{c+ab}}\le\dfrac{3}{5}\)
P/s: Em nhờ quý thầy cô và các bạn hỗ trợ và giúp đỡ em với ạ!
Em cám ơn nhiều lắm ạ!
Cho các số thực dương : \(a;b;c\) thỏa mãn điều kiện : \(ab+bc+ac+abc=4\)
Chứng minh rằng : \(\dfrac{1}{\sqrt{2.\left(a^2+b^2\right)}+4}+\dfrac{1}{\sqrt{2.\left(b^2+c^2\right)}+4}+\dfrac{1}{\sqrt{2.\left(c^2+a^2\right)}+4}\le\dfrac{1}{2}\)
P/s: Em xin phép nhờ sự giúp đỡ của quý thầy cô giáo và các bạn yêu toán.
Em cám ơn nhiều lắm ạ!