Bài 4: Một số hệ thức về cạnh và góc trong tam giác vuông

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Linh Bùi

Cho ∆ABC vuông tại A, đường cao AH. D,e lần lượt là hình chiếu của H trên AB,AC

a)AD.AB=AE.AC? ∆ABC~∆ABC?

b)Biết BH=2cm, HC=4,5cm. Tính DE? Góc ABC? S∆ABC

Mọi người giúp em với ạ!!! Cần gấp

Nguyễn Lê Phước Thịnh
1 tháng 7 2020 lúc 19:29

a) Áp dụng hệ thức lượng trong tam giác vuông vào ΔAHB vuông tại H, ta được:

\(AD\cdot AB=AH^2\)(1)

Áp dụng hệ thức lượng trong tam giác vuông vào ΔAHC vuông tại H, ta được:

\(AE\cdot AC=AH^2\)(2)

Từ (1) và (2) suy ra \(AD\cdot AB=AE\cdot AC\)(đpcm)

b) Xét ΔABC có AH là đường cao ứng với cạnh BC(gt)

nên \(AH^2=BH\cdot CH\)(định lí 2 về hệ thức lượng trong tam giác vuông)

\(\Leftrightarrow AH^2=2\cdot4,5=9\)

hay \(AH=\sqrt{9}=3cm\)

Xét tứ giác ADHE có

\(\widehat{EAD}=90^0\)(ΔABC vuông tại A, E∈AC, D∈AB)

\(\widehat{HDA}=90^0\)(HD⊥AB)

\(\widehat{HEA}=90^0\)(HE⊥AC)

Do đó: ADHE là hình chữ nhật(dấu hiệu nhận biết hình chữ nhật)

⇒AH=DE(hai đường chéo của hình chữ nhật ADHE)

mà AH=3cm(cmt)

nên DE=3cm

Vậy: DE=3cm


Các câu hỏi tương tự
nguyễn hà phương
Xem chi tiết
love love
Xem chi tiết
đào minh tuấn
Xem chi tiết
Oanh Nguyễn Hoàng
Xem chi tiết
Vy Jully
Xem chi tiết
Nguyễn Thị Hiền
Xem chi tiết
nguyễn hương mây
Xem chi tiết
Huy Khánh Đoàn
Xem chi tiết
dffhb
Xem chi tiết