Cho tam giác ABC vuông tại A ( AB<AC) có đường cao AH.
a/ Chứng minh tam giác ABC đồng dạng tam giác HBA từ đó suy ra AB2 = BH.BC
b/ Vẽ tia phân giác của góc ABC cắt AH tại I, cắt AC tại E. Chứng minh IH/IA = BI/BE
c/ Từ E kẻ đường thẳng song song với AH cắt tia BA tại P. Gọi M là giao điểm của PE và CB. Chứng minh PC2 = AH.PM + CE.CA
Cho tam giác ABC vuông tại A ( AB<AC) đường cao AH
a/ Chứng minh tam giác BHA đồng dạng tam giác BAC
b/ Vẽ BD là đường phân giác của góc tam giác ABC cắt AH tại K. Chứng minh : BA.BK = BD.BH
c/ Qua C kẻ đường thẳng vuông góc với BD tại E. Chứng minh AE = EC
cho tam giác ABC vuông tại A ( AB<AC) có đường cao AH. Gọi M là trung điểm của AC, BM cắt AH tại I. vẽ AK vuông góc với BM tại K,
a) chứng minh : tam giác BHI đồng dạng với tam giác AKI và IB. IK = IA.IH
b) chứng minh: góc BAH = góc BKH
c) tia AK cắt BC tại D. Chứng minh: HD.KC = HK.DC
Cho ∆ABC vuông tại A( AB<AC) có đường cao AH.
a) Chứng minh ∆HBA~∆ABC và viết tỉ số đồng dạng.
b) Trên đoạn thẳng AH lấy điểm D. Gọi E là hình chiếu của C trên đường thẳng BD. Chứng minh BH.BC = BD.BE
c) Qua điểm D vẽ đường thẳng vuông góc với BE, trên đường thẳng này lấy điểm K, sao cho BA=BK. Chứng minh KB vuông góc KE.
Giúp mik với, mik cần gấp!
Cho tam giác ABC vuông tại A có AB = 15cm, AC = 20cm. Kẻ đường cao AH.
a, Chứng minh tam giác HBA đồng dạng với tam giác ABC, từ đó tính độ dài đường cao AH
b, Tia phân giác của góc HAC cắt BC tại D. Chứng minh tam giác ABD cân
c, Trên cạnh AC lấy điểm E sao cho AE = AH. Chứng minh CE.CA = CD.CH
d, Chứng minh DC/DH = AC/AE
Cho tam giác nhọn ABC (AB < AC), đường cao AD ( D thuộc BC). Từ D vẽ DH vuông góc với AC tại H thuộc AB, vẽ DI vuông góc với AB tại I thuộc AB. a, Chứng minh ∆AHD đồng dạng với ∆ADC. Từ đó suy ra AD(bình) = AC . AH b, Chứng minh DI(bình) = AI . BI c, Chứng minh góc AIH = góc DCH
Cho tam giác ABC vuông có AB = 9cm , AC = 12cm . Vẽ phân giác BD
a) Tính BD , AD
b) Qua D vẽ đường thẳng vuông góc với BC tại H , cắt tia BA tại E . chứng minh \(\Delta ABC\) đồng dạng \(\Delta HDC\) . Tính diện tích \(\Delta ADE\)
Cho tam giác ABC vuông tại A và có đường cao AH.
a/ Chứng minh AHC đồng dạng với BAC và suy ra AH.BC=AB. AC
b/ Gọi CD là đường phân giác của góc ACB (D thuộc cạnh AB). CD cắt AH tại E. Chứng minh rằng: tam giác ACE đồng dạng với tam giác BCD.
c/ Gọi I là trung điểm của đoạn thẳng DE. Chứng minh rằng: AI vuông góc DE