Cho tam giác ABC ngoại tiếp đường tròn (O. Gọi D, E,F lầ lượt là các tiếp điểm của đường tròn trên các cạnh AB, BC, CA. Gọi M, ,N, P lần lượt là các giao điểm của đường tròn (O) với các tia OA, OB,OC. Chứung minh rằng các điểm M, N, P lần lượt là tâm của đường tròn nội tiếp các tam giác ADF, BDE và CEF
cho tam giác ABC nội tiếp đường tròn tâm O. gọi P,Q,R lần lượt là trung điểm của các cung nhỏ BC,CA,AB
a) CMR: AP vuông góc với QR
b) AB cắt DE tại I. CMR: Tam giác CBI cân tại B
cho tam giác abc nội tiếp đường tròn tâm o. tia phân giác của góc abc cắt đường tròn tâm o tại d. tiếp tuyến tại d của đường tròn tâm o cắt 2 đường thẳng ab và ac lần lượt tại e và f. a, chứng minh ef song song với cb. b, chứng minh ab.af=ac.ae=ad^2
Cho tam giác ABC, đường tròn (I) nội tiếp tam giác ABC tiếp xúc với AB,AC ở D,E. Gọi K là giao điểm của AI với (I). Cmr: K là tâm của đường tròn nội tiếp tam giác ADE.
cho tam cân ABC ( cân tại A). GỌi O là trung điểm của BC. Vẽ đường tròn tâm O, bán kính OB, đường tròn này cắt AB,AC lần lượt ở M,N. CMR:
a) BM=CM
b) Tam giác OBM= tam giác OCN
c) Góc NBA=1/2 góc MON
d) AO,CM, BN đồng quy
Cho tam giác ABC nhọn đường tròn tâm o đường kính BC các cá cạnh AB AC theo thứ tự tại E và D, BD và CEcắt nhau tại H a) chứng minh AH vuông góc với BC b) chứng minh bốn điểm A,E,D,H cùng thuộc một đường tròn C) gọi I là tâm của đường tròn đi qua bốn điểm A,D,E,H. Chứng minh rằng ID vuông góc với OD
Cho nửa đường tròn tâm O đường kính AB = 2R ( R là một độ dài cho trước). Gọi C, D là hai điểm trên nửa đường tròn đó sao cho C thuộc cung AD và góc COD = 120. gọi giao điểm của hai dây AD và BC là E, giao điểm của các đường thẳng AC và BD là Fa) Chứng minh 4 điểm C, D, E, F cùng nằm trên một đường tròn
b) Tính góc IOD
c) CM ID là tiếp tuyến của đường tròn tâm O
Cho nửa đường tròn tâm O đường kính AB = 2R ( R là một độ dài cho trước). Gọi C, D là hai điểm trên nửa đường tròn đó sao cho C thuộc cung AD và góc COD = 120. gọi giao điểm của hai dây AD và BC là E, giao điểm của các đường thẳng AC và BD là Fa) Chứng minh 4 điểm C, D, E, F cùng nằm trên một đường tròn
b) Tính góc IOD
c) Chứng minh ID là tiếp tuyến của đường tròn tâm O