Lời giải:
Xét hiệu:
\(\frac{a^4+b^4+c^4}{2}-a^2b^2+b^2c^2+c^2a^2\)
\(=\frac{1}{2}[ a^4+b^4+c^4-2(a^2b^2+b^2c^2+c^2a^2)]\)
\(=\frac{1}{2}[(a^4+b^4+c^4-2a^2b^2-2b^2c^2+2a^2c^2)-4a^2c^2]\)
\(=\frac{1}{2}[(a^2-b^2+c^2)^2-(2ac)^2]\)
\(=\frac{1}{2}[(a^2-b^2+c^2-2ac)(a^2-b^2+c^2+2ac)]\)
\(=\frac{1}{2}[(a-c)^2-b^2][(a+c)^2-b^2]\)
\(=\frac{1}{2}(a-c+b)(a-c-b)(a+c-b)(a+c+b)\)
\(=-\frac{1}{2}(a+b-c)(b+c-a)(a+c-b)(a+b+c)\)
Theo BĐT tam giác thì \(a+b-c>0; b+c-a>0; a+c-b>0; a+b+c>0\)
\(\Rightarrow \frac{a^4+b^4+c^4}{2}-(a^2b^2+b^2c^2+c^2a^2)=-\frac{1}{2}(a+b-c)(b+c-a)(c+a-b)(a+b+c)< 0\)
\(\Rightarrow \frac{a^4+b^4+c^4}{2}< a^2b^2+b^2c^2+c^2a^2\) (đpcm)