Với a;b;c dương:
\(\left(a+b\right)\left(b+c\right)\left(c+a\right)=\left(a+b+c\right)\left(ab+bc+ca\right)-abc\)
\(=\left(a+b+c\right)\left(ab+bc+ca\right)-\sqrt[3]{abc}.\sqrt[3]{ab.bc.ca}\)
\(\ge\left(a+b+c\right)\left(ab+bc+ca\right)-\dfrac{1}{3}\left(a+b+c\right).\dfrac{1}{3}\left(ab+bc+ca\right)\)
\(=\dfrac{8}{9}\left(a+b+c\right)\left(ab+bc+ca\right)\)
Đặt vế trái BĐT là P, ta có:
\(\dfrac{ab}{1-c^2}=\dfrac{ab}{\left(1-c\right)\left(1+c\right)}=\dfrac{ab}{\left(a+b\right)\left(a+c+b+c\right)}=\dfrac{ab}{\sqrt{a+b}.\sqrt{a+b}\left(a+c+b+c\right)}\)
\(\le\dfrac{ab}{\sqrt[]{2\sqrt[]{ab}}.\sqrt[]{a+b}.2\sqrt[]{\left(a+c\right)\left(b+c\right)}}=\dfrac{\sqrt[4]{\left(ab\right)^3}}{2\sqrt[]{2}.\sqrt[]{\left(a+b\right)\left(b+c\right)\left(c+a\right)}}\)
Tương tự:
\(\dfrac{bc}{1-a^2}\le\dfrac{\sqrt[4]{\left(bc\right)^3}}{2\sqrt[]{2}.\sqrt[]{\left(a+b\right)\left(b+c\right)\left(c+a\right)}}\)
\(\dfrac{ca}{1-b^2}\le\dfrac{\sqrt[4]{\left(ca\right)^3}}{2\sqrt[]{2}.\sqrt[]{\left(a+b\right)\left(b+c\right)\left(c+a\right)}}\)
Cộng vế:
\(P\le\dfrac{\sqrt[4]{\left(ab\right)^3}+\sqrt[4]{\left(bc\right)^3}+\sqrt[4]{\left(ca\right)^3}}{2\sqrt[]{2}.\sqrt[]{\left(a+b\right)\left(b+c\right)\left(c+a\right)}}\)
Nên ta chỉ cần chứng minh:
\(\sqrt[4]{\left(ab\right)^3}+\sqrt[4]{\left(bc\right)^3}+\sqrt[4]{\left(ca\right)^3}\le\dfrac{3}{2\sqrt[]{2}}\sqrt[]{\left(a+b\right)\left(b+c\right)\left(c+a\right)}\)
\(\Leftrightarrow\left(\sqrt[4]{\left(ab\right)^3}+\sqrt[4]{\left(bc\right)^3}+\sqrt[4]{\left(ca\right)^3}\right)^2\le\dfrac{9}{8}\left(a+b\right)\left(b+c\right)\left(c+a\right)\)
Mà \(\dfrac{9}{8}\left(a+b\right)\left(b+c\right)\left(c+a\right)\ge\left(a+b+c\right)\left(ab+bc+ca\right)\)
Nên ta chỉ cần chứng minh:
\(\left(\sqrt[4]{\left(ab\right)^3}+\sqrt[4]{\left(bc\right)^3}+\sqrt[4]{\left(ca\right)^3}\right)^2\le\left(a+b+c\right)\left(ab+bc+ca\right)\)
Thật vậy:
\(\left(\sqrt[4]{ab}.\sqrt[]{ab}+\sqrt[4]{bc}.\sqrt[]{bc}+\sqrt[4]{ca}.\sqrt[]{ca}\right)^2\le\left(\sqrt[]{ab}+\sqrt[]{bc}+\sqrt[]{ca}\right)\left(ab+bc+ca\right)\)
\(\le\left(a+b+c\right)\left(ab+bc+ca\right)\) (đpcm)
Dấu "=" xảy ra khi \(a=b=c=1\)