Áp dụng bất đẳng thức Cauchy:
\(a^2+\frac{b^2}{4}\ge2\sqrt{\frac{a^2b^2}{4}}=ab\left(đpcm\right)\)
Áp dụng bất đẳng thức Cauchy:
\(a^2+\frac{b^2}{4}\ge2\sqrt{\frac{a^2b^2}{4}}=ab\left(đpcm\right)\)
Với a, b là các số thực dương thỏa mãn ab+a+b=1. CMR: \(\frac{a}{1+a^2}+\frac{b}{1+b^2}=\frac{1+ab}{\sqrt{2\left(1+a^2\right)\left(1+b^2\right)}}\)
Cho các sô thực a,b tm a+b khác 0. CMR:\(a^2+b^2+(\frac{1+ab}{a+b})^2\)
B1: Cho a+b+c+d=2. CMR \(a^2+b^2+c^2+d^2\ge1\)
B2: Cho 2 số thực a,b khác 0.CMR \(\frac{a^2}{1+16a^4}+\frac{b^2}{1+b^4}\le\frac{1}{4}\)
B3: Cho x,y>0 và x+y\(\ge4\). CMR 2x+3y+\(\frac{6}{x}+\frac{10}{y}\ge18\)
GIÚP MÌNH NỮA NHA, CHIỀU HỌC ỒI
Cho a, b, c là các số thực không âm thỏa mãn không có hai số nào đồng thời bằng 0. CMR:\(\frac{1}{\left(a+b\right)^2}+\frac{1}{\left(b+c\right)^2}+\frac{1}{\left(c+a\right)^2}\ge\frac{9}{4\left(ab+bc+ca\right)}\)
Một lời giải bằng SOS, uvw, muirhead đang chờ các bác:)
1 . Cho 3 số thực dương a,b,c. CMR::
\(\sqrt{\frac{a^3}{b^3}}+\sqrt{\frac{b^3}{c^3}}+\sqrt{\frac{c^3}{a^3}}\ge\frac{a}{b}+\frac{b}{c}+\frac{c}{a}\)
2 . cho a, b, c là 3 số đôi một khác nhau thỏa mãn :
\(\frac{a}{b-c}+\frac{b}{c-a}+\frac{c}{a-b}=0\)
CMR : \(\frac{a}{\left(b-c\right)^2}+\frac{b}{\left(c-a\right)^2}+\frac{c}{\left(a-b\right)^2}=0\)
Cho a,b,c là 3 số thực dương thõa mãn \(a^2+2b^2\le3c^2\). CMR\(\frac{1}{a}+\frac{2}{b}\ge\frac{3}{c}\)
Cho a,b,c là các số thực . CMR: ̣(a^2+1).(b^2+1).(c^2+1)>=(3(a+b+c)^2/4)
1) Cho x,y,z > -1 thỏa mãn:
\(x^3+y^3+z^3\)≥ \(x^2+y^2+z^2\)
CMR: \(x^5+y^5+z^5\)≥ \(x^2+y^2+z^2\)
2. Cho a,b,c ϵ {0;1;2} và a+b+c=3
CMR: \(a^2+b^2+c^2\) ≤ 5
3. Cho \(a_1,a_2,..,a_9\in\left[-1;1\right]\) sao cho \(a^3_1+a^3_2+...+a^3_9=0\)
CMR: \(a^3_1+a^3_2+...+a^3_9\le3\)
4. Cho \(ab\ge1\). CMR: \(\frac{1}{a^2+1}+\frac{1}{b^2+1}\ge\frac{2}{1+ab}\)
5. Cho a,b,c >0. CMR:
\(\frac{a^2+b^2}{a+b}+\frac{b^2+c^2}{b+c}+\frac{c^2+a^2}{c+a}\le3\cdot\frac{a^2+b^2+c^2}{a+b+c}\)
a) CMR: \(\frac{1}{\sqrt{a+3}+\sqrt{a+2}}+\frac{1}{\sqrt{a+2}+\sqrt{a+1}}+\frac{1}{\sqrt{a+1}+\sqrt{a}}=\frac{3}{\sqrt{a+3}+\sqrt{a}}\)
b) Cho các số thực dương x, y, z thỏa mãn x+y+z=1. CMR: \(\frac{x}{x+yz}+\frac{y}{y+xz}+\frac{z}{z+xy}\le\frac{9}{4}\)