cho các số thực a, b, c và đa thức g(x)=x^3 + ax^2 + x + 10 có 3 nghiệm phân biệt. Biết rằng mỗi nghiệm của đa thức g(x) lại là nghiệm của đa thức f(x)=x^4 + x^3 + bx^2 + 100x + c. Tính giá trị của f(1)
Cho đa thức \(f\left(x\right)=x^5-3x^4+ax^3+bx^2+cx-15\)
a ) Xác định a,b,c để đa thức f(x) chia hết cho đa thức \(g\left(x\right)=x^3-x^2-4x+4\)
b ) Tìm giá trị nhỏ nhất của thương trong phép chia f(x) cho g(x)
Cho phương trình: -(m+4)x + 3m +3=0 (x là ẩn số) a) Chứng minh phương trình đã cho luôn có nghiệm với mọi gia trị của m b) Tính tổng và tích hai nghiệm của phương trình c) Tìm m để phương trình có hai nghiệm x1,x2 thỏa mãn: - x1 = x2 - + 8
cho P(x) là các đa thức hệ số thực và a,b là cac số nguyên thõa P(a+b)=ab
Chứng minh rằng P(a) chia hết cho b, P(b) chia hết cho a
Cho đa thức: \(P\left(x\right)=ax^2+bx+c\). Biết P(x)>0 với mọi x thuộc R và a>0. CM: \(\dfrac{5a-3b+2c}{a-b+c}>1\)
Cho đa thức: \(P\left(x\right)=ax^2+bx+c\). Biết P(x)>0 với mọi x thuộc R và a>0.CM: \(\dfrac{5a-3b+2c}{a-b+c}>1\)
xác định a,b để đa thức f(x)=2ax2+bx-3 chia hết cho 4x-1 và x+3
cho phương trình : x^2-2(a-1)x+2a-5=0
a, chứng minh rằng pt có nghiệm với mọi a
b, a bằng bao nhiêu thì phương trnhf đã cho có hai nghiệm x1,x2 thỏa mãn x1<1<x2
xét các số thực a,b,c (a≠0) sao cho phương trình ax2+bx+c=0 có 2 nghiệm m, n thỏa mãn \(0\le m\le1;0\le m\le1\). tìm GTNN của \(Q=\dfrac{2a^2-ac-2ab+bc}{a^2-ab+ac}\)