Ta có: \(0\le a;b;c\le2\Rightarrow\left(2-a\right)\left(2-b\right)\left(2-c\right)\ge0\)
\(\Leftrightarrow\left(4-2a-2b+ab\right)\left(2-c\right)\ge0\)
\(\Leftrightarrow8-4c-4a+2ac-4b+2bc+2ab-abc\ge0\)
\(\Leftrightarrow8-4\left(a+b+c\right)+2\left(ab+bc+ac\right)-abc\ge0\)
\(\Leftrightarrow-4+a^2+b^2+c^2+2\left(ab+bc+ac\right)-abc\ge a^2+b^2+c^2\)
\(\Leftrightarrow5\ge a^2+b^2+c^2+abc\ge a^2+b^2+c^2\Rightarrow a^2+b^2+c^2\le5\)\("="\Leftrightarrow\left(a;b;c\right)=\left(0;1;2\right)\) và hoán vị