Cho a, b, c là các số thực dương thỏa mãn \(4\left(a^3+b^3\right)+c^3=2\left(a+b+c\right)\left(ac+bc-2\right)\)
Tìm giá trị lớn nhất của \(P=\frac{2a^2}{3a^2+b^2+2ac\left(c+2\right)}+\frac{b+c}{a+b+c+2}-\frac{\left(a+b\right)^2+c^2}{16}\)
Cho a,b,c là các số dương thỏa mãn a+b+c=3. Tìm Max của biểu thức
\(P=\dfrac{a}{a^3+b^2+c}+\dfrac{b}{b^3+c^2+a}+\dfrac{c}{c^3+a^2+b}\)
cho ba số a,b,c khác 0 và không đòng thời bằng nhau, thoã mãn \(a^3+b^3+c^3=3abc\).tính giá trị biểu thức
P=\(\frac{1}{a^2+b^2-c^2}+\frac{1}{b^2+c^2-a^2}+\frac{1}{c^2+a^2-b^2}\)
a) Cho hai số thực a và b thỏa a-b=2. Tích a và b đạt Min bằng bao nhiêu
b) Có bao nhiêu giá trị nguyên của x thuộc [-2;5] thỏa mãn phương trình x2(x-1) \(\ge0\)
c) Bất pt \(\left|4x+3\right|-\left|x-1\right|< x\) có tập nghiệm S=(a;b). Tính giá trị biểu thức P=2a-4b
d) Có bao nhiêu giá trị nguyên của tham số m để bất phương trình \(x^2-2mx+2\left|x-m\right|+2>0\)
cho hai số thực x,y thỏa mãn điều kiện x-3\(\sqrt{x+1}=3\sqrt{y+2}-y\).hãy tìm giá trị lớn nhất và giá trị nhỏ nhất của biểu thức K=x+y
Cho a,b,c là 3 số thực dương t/m ab+bc+ca=1. Tìm min
\(M=\dfrac{1}{4a^2-bc+1}+\dfrac{1}{4b^2-ca+1}+\dfrac{1}{4c^2-ab+1}\)
cho a,b,c không âm. Cmr: \(a^2+b^2+c^2+3\sqrt[3]{\left(abc\right)^2}\ge2\left(ab+bc+ca\right)\)
Cho 2 số thực a,b thuộc khoảng (0; 1) thỏa mãn
(a3 + b3)(a + b) - ab(a - 1)(b - 1) = 0. Giá trị lớn nhất của
P = xy là
cho x, y là hai số thực thỏa mãn (x - 4)2 + (y - 3)2 = 5 và biểu thức
Q=\(\sqrt{\left(x+1\right)^2+\left(y-3\right)^2}+\sqrt{\left(x-1\right)^2+\left(y+1\right)^2}\) đạt giá trị lớn nhất. Tìm P = x + y