cho a,b,c>0
Cm: \(\frac{1}{a+b}+\frac{1}{b+c}+\frac{1}{c+a}+\frac{1}{2\sqrt[3]{abc}}\ge\frac{\left(a+b+c+\sqrt[3]{abc}\right)^2}{\left(a+b\right)\left(b+c\right)\left(c+a\right)}\)
Cho a,b,c > 0 . Cmr: \(a^2+b^2+c^2+\frac{9abc}{a+b+c}-2\left(ab+bc+ca\right)\ge0\)
Cho phương trình \(\left(a^2+b^2+c^2+1\right)x-\left(ab+bc+ca\right)=0\), \(\left(a,b,c\in R\right)\)
Nghiệm \(x_0\) của phương trình này thỏa mãn điệu kiện:
\(A.1\le x_0< 2\)
\(B.\left|x_0\right|\ge1\)
\(C.\left|x_0\right|< 1\)
D.\(0< x_0< 1\)
cho a,b,c>0. Cmr:
\(\sqrt{\frac{a^3}{a^3+\left(b+c\right)^3}}+\sqrt{\frac{b^3}{b^3+\left(a+c\right)^3}}+\sqrt{\frac{c^3}{c^3+\left(a+b\right)^3}}\ge1\)
Cho \(\left\{{}\begin{matrix}a,b,c>0\\a^2+b^2+c^2=1\end{matrix}\right.\). CMR:\(\frac{1}{1-ab}+\frac{1}{1-bc}+\frac{1}{1-ca}\le\frac{9}{2}\)
Cho a, b, c là các số thực dương thỏa mãn \(4\left(a^3+b^3\right)+c^3=2\left(a+b+c\right)\left(ac+bc-2\right)\)
Tìm giá trị lớn nhất của \(P=\frac{2a^2}{3a^2+b^2+2ac\left(c+2\right)}+\frac{b+c}{a+b+c+2}-\frac{\left(a+b\right)^2+c^2}{16}\)
Từ cách phân tích: \(S_a\left(b-c\right)^2+S_b\left(c-a\right)^2+S_c\left(a-b\right)^2\ge S\left(a-b\right)\left(b-c\right)\left(c-a\right)\).CMR:
Với \(S_a+S_b\ge0;S_b+S_c\ge0\) thì\(2\sqrt{\left(S_a+S_b\right)\left(S_b+S_c\right)}+2S_b-S\left(c-a\right)\ge0\)
Giải các bpt
a) \(\sqrt{x^2-4-12}\le x-4\)
b) \(\sqrt{x^2-8x}\ge2\left(X+1\right)\)
C) \(\left(X-2\right).\sqrt{X^2+4}< X^2-4\)
cho a,b,c>0 và abc=1
Cmr: \(\frac{1}{\left(a+1\right)^2+b^2+1}+\frac{1}{\left(b+1\right)^2+c^2+1}+\frac{1}{\left(c+1\right)^2+a^2+1}\le\frac{1}{2}\)