a. Cho x,y,z là 3 số khác 0 thỏa mãn \(\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z}=0\)
Tính giá trị biểu thức A=\(\dfrac{\left(x+y\right)\left(y+z\right)\left(z+x\right)}{xyz}\)
b. Cho a,b,c là các số hữu tỉ khác nhau từng đôi một. Chứng minh rằng A=\(\dfrac{1}{\left(a-b\right)^2}+\dfrac{1}{\left(b-c\right)^2}+\dfrac{1}{\left(c-a\right)^2}\)
là bình phương của 1 số hữu tỉ
c. Tìm giá trị lớn nhất của biểu thức B=\(\dfrac{5x^2+4x-1}{x^2}\)
cho các số nguyên dương a,b,c,d thỏa mãn a+b+x+d=4 chứng minh: \(\dfrac{1}{ab}+\dfrac{1}{bc}+\dfrac{1}{cd}+\dfrac{1}{da}\ge a^2+b^2+c^2+d^2\)
(a+b+c)2= a2+b2+c2 và abc≠0. Chứng minh rằng \(\dfrac{bc}{a^2}+\dfrac{ac}{b^2}+\dfrac{ab}{c^2}=3\)
Cho x,y,a,b là những số thực thỏa mãn:
\(\dfrac{x^4}{a}+\dfrac{y^4}{b}=\dfrac{x^2+y^2}{a+b}\)và\(x^2+y^2=1\)
Chứng minh: \(\dfrac{x^{2006}}{a^{1003}}+\dfrac{y^{2006}}{b^{1003}}=-\dfrac{2}{\left(a+b\right)^{1003}}\)
Cho ad = bc và a, b,c d khác 0. Chứng tỏ rằng :
a) \(\dfrac{a}{b}=\dfrac{c}{d}\)
b) \(\dfrac{a+c}{b+d}=\dfrac{a}{b}\)
c) \(\dfrac{a}{c}=\dfrac{b}{d}\)
d) \(\dfrac{a+b}{b}=\dfrac{c+d}{d}\)
e) \(\dfrac{2a+b}{2c+d}=\dfrac{a}{c}\)
Cho a, b, c khác 0 thỏa mãn a + b - c = 0. Tính :
\(B=\dfrac{1}{a^2+b^2-c^2}+\dfrac{1}{b^2+c^2-a^2}+\dfrac{1}{c^2+a^2-b^2}\)
Cho các số x, y, z khác 0 thỏa mãn \(\dfrac{x}{a}+\dfrac{y}{b}+\dfrac{z}{c}=0\) và \(\dfrac{a}{x}+\dfrac{b}{y}+\dfrac{c}{z}=2\)
CMR: \(A=\dfrac{a}{bcx^2}+\dfrac{b}{acy^2}+\dfrac{c}{abz^2}\) không phụ thuộc vào x, y, z
a) Xác định a, b, c, d để: \(\dfrac{x^3+2x}{x^4-1}=\dfrac{a}{x+1}+\dfrac{b}{x-1}+\dfrac{cx+d}{x^2+1}\)
b) Rút gọn: \(A=\dfrac{a^2}{a^2-b^2-c^2}+\dfrac{b^2}{b^2-a^2-c^2}+\dfrac{c^2}{c^2-a^2-b^2}\)
Với a + b + c = 0.
Tìm điều kiện của x để phân thức sau có ý nghĩa :
a)\(\dfrac{x-2}{x-5}\) b)\(\dfrac{2x-1}{\dfrac{1}{2}x+4}\)c)\(\dfrac{5}{-2x-10}\)