\(A=ab\left(a+b\right)+ac\left(a+c\right)+bc\left(b+c\right)+a^3+b^3+c^3\\ =ab\left(1-c\right)+ac\left(1-b\right)+bc\left(1-a\right)+a^3+b^3+c^3\\ =ab-abc+ac-abb+bc-abc+a^3+b^3+c^3\\ =\left(ab+ac+bc\right)-3abc+\left(a^3+b^3+c^3\right)\\ \overset{BDT\text{ }Cô-si}{\ge}\frac{\left(a+b+c\right)^2}{3}-3abc+3\sqrt[3]{a^3\cdot b^3\cdot c^3}\\ =\frac{\left(1\right)^2}{3}-3abc+3abc=\frac{1}{3}\)
Dấu "=" xảy ra khi:
\(\left\{{}\begin{matrix}a+b+c=1\\a=b=c\end{matrix}\right.\Leftrightarrow a=b=c=\frac{1}{3}\)
Vậy \(A_{Min}=\frac{1}{3}\Leftrightarrow a=b=c=\frac{1}{3}\)