Kẻ đường cao AH \(\left(H\in BC\right)\). Khi đó H nằm giữa B và C
Tia AG đi qua trung điểm I của cạnh BC.
Vì là trọng tâm của tam giác ABC nên AI = 3GI
Xét tam giác GBC vuông tại G có GI là trung tuyến nên BC = 2GI
Lại có:
\(\cot B+\cot C=\frac{BH}{AH}+\frac{CH}{AH}=\frac{BC}{AH}\)
Vì H là hình chiếu A trên BC nên \(AH\le AI\)
\(\Rightarrow\frac{BC}{AH}\ge\frac{BC}{AI}=\frac{2GI}{3GI}=\frac{2}{3}\)
Vậy ta có đpcm.
Dấu "=" khi \(H\equiv I\) hay tam giác ABC cân tại A có \(BM\perp CN\)