Cho ∆ABC có AB < BC Trên tia BA lấy điểm D sao cho BC = BD Tia phân giác của Ê cắt cạnh AC ở E. Gọi K là trung điểm của DC.
a) Chứng minh:∆ BED= ∆ BEC
b) Chứng minh: EK vuông góc DC
d) Kẻ AH L DC(H thuộc DC) . ∆ ABC cần bổ xung thêm điều kiện gì để DAH =45^
c) Chứng minh: B, K, E thẳng hàng.
NHANH GIÚP Ạ!😢
a) Xét \(\Delta BED\) và \(\Delta BEC\) có:
\(BD=BC\) (giả thiết)
\(\widehat{DBE}=\widehat{CBE}\) (do \(BE\) là tia phân giác \(\widehat{B}\))
\(BE\) là cạnh chung
\(\Rightarrow\Delta BED=\Delta BEC\left(c.g.c\right)\)
b) Vì \(\Delta BED=\Delta BEC\left(cmt\right)\)
\(\Rightarrow ED=EC\) (\(2\) cạnh tương ứng)
\(\Rightarrow\Delta EDC\) cân tại \(E\)
Mà \(EK\) là đường trung tuyến \(\Delta EDC\)
\(\Rightarrow EK\) cũng là đường trung trực \(\Delta EDC\)
\(\Rightarrow EK\perp DC\)
c) Giả sử \(\Delta ABC\) vuông tại \(B\)
Ta có: \(\Delta DBC\) vuông cân tại \(B\)
\(\Rightarrow\widehat{ADC}=\widehat{BCD}=45^o\)
Xét \(\Delta ADH\left(\widehat{H}=90^o\right)\) có:
\(\widehat{ADH}+\widehat{DAH}=90^o\) (\(2\) góc phụ nhau)
\(\Rightarrow\widehat{DAH}=90^o-45^o=45^o\)
d) Ta có: \(BC=BD\) (giả thiết)
\(\Rightarrow\Delta BCD\) cân tại \(B\)
Mà \(BE\) là đường phân giác \(\widehat{B}\) (giả thiết)
\(\Rightarrow BE\) cũng là đường cao \(\Delta BCD\)
\(\Rightarrow BE\perp DC\)
Lại có: \(EK\perp DC\left(cmt\right)\)
\(\Rightarrow B,K,E\) thẳng hàng