a) Xét tam giác ADB và tam giác AEC:
^ADB = ^AEC (=90o)
AB = AC (∆ABC cân tại A)
^A chung
=> Tam giác ADB = Tam giác AEC (ch - gn)
=> AD = AE (2 cạnh tương ứng)
=> Δ ADE cân tại A
b) Xét tam giác AED: ^A + ^AED + ^ADE = 180o (tổng 3 góc trong tam giác)
Mà ^AED = ^ADE (Δ ADE cân tại A)
=> ^A = 2 ^AED (1)
Xét tam giác ABC: ^A + ^B + ^C = 180o (tổng 3 góc trong tam giác)
Mà ^B = ^C (Δ ABC cân tại A)
=> ^A = 2 ^B (2)
Từ (1) và (2) => ^B = ^AED
Mà 2 góc này ở vị trí đồng vị
=> DE // BC (dhnb)
c) Xét tam giác BEC và tam giác CDB:
^BEC = ^CDB (= 90o)
BC chung
^B = ^C (∆ABC cân tại A)
=> Tam giác CBE = Tam giác CDB (ch - gn)
=> IB = IC (2 cạnh tương ứng)
d) Xét tam giác ABI và tam giác ACI:
AB = AC (∆ABC cân tại A)
AI chung
IB = IC (cmt)
=> Tam giác ABI = Tam giác ACI (c - c - c)
=> ^BAI = ^CAI (2 góc tương ứng)
=> AI là phân giác ^A hay AM là phân giác ^A (M\(\in AI\))
Xét ∆ABC cân tại A có: AM là phân giác ^A (cmt)
=> AM là đường cao (TC các đường trong tam giác)
=> AM \(\perp\) BC