Lời giải:
Ta có \(P=\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}=\left ( \frac{1}{a}-\frac{1}{b}-\frac{1}{c} \right )^2+\frac{2}{ab}+\frac{2}{ac}-\frac{2}{bc}\)
\(\Leftrightarrow P=6^2+\frac{2(b+c-a)}{abc}=6^2+\frac{2(-abc)}{abc}=34\)
Lời giải:
Ta có \(P=\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}=\left ( \frac{1}{a}-\frac{1}{b}-\frac{1}{c} \right )^2+\frac{2}{ab}+\frac{2}{ac}-\frac{2}{bc}\)
\(\Leftrightarrow P=6^2+\frac{2(b+c-a)}{abc}=6^2+\frac{2(-abc)}{abc}=34\)
1,cho a,b,c. cm 1\(\ge\) a,b,c\(\ge\)0, a2 +b2+c2\(\le\)2
2, cho a,b,c>0.
CM: (a+b+c)(\(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\ge9\))
3,cho a,b,c>0 CM:
\(\dfrac{a+b}{c}+\dfrac{b+c}{a}+\dfrac{c+a}{b}\ge6\)
mn giải giúp mk nha :)
Cho \(abc-a+b+c=0\)và \(\dfrac{1}{a}-\dfrac{1}{b}-\dfrac{1}{c}=6\)
Tính \(P=\dfrac{1}{a^2}+\dfrac{1}{b^2}+\dfrac{1}{c^2}\)
1. Cho a,b > 0. CMR:
a) \(\dfrac{a}{b}+\dfrac{b}{a}+\dfrac{ab}{a^2-ab+b^2}\ge3\)
b) \(\dfrac{a}{b}+\dfrac{b}{a}+\dfrac{9ab}{a^2+b^2}\ge\dfrac{13}{2}\)
Các bạn ơi giúp mk với.
Cho a, b, c \(\ne\) 0 thoả mãn a + b + c = abc và \(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}=\sqrt{3}\). Tính giá trị của biểu thức \(P=\dfrac{1}{a^2}+\dfrac{1}{b^2}+\dfrac{1}{c^2}\).
1 cho \(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}=1\)
\(\dfrac{1}{a^2}+\dfrac{1}{b^2}+\dfrac{1}{c^2}=1\)
cmr : a+b+c = abc
Cho a,b,c là ba số khác nhau và a+b+c=0. Cmr:\(\dfrac{1}{a^2}+\dfrac{1}{b^2}+\dfrac{1}{c^2}=\left(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\right)^2\)
Cho \(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}=k\) và a+b+c=abc
Tìm k để \(\dfrac{1}{a^2}+\dfrac{1}{b^2}+\dfrac{1}{c^2}=k\)
Các bạn giải hộ mình bài này với: Cho a,b,c > 0
\(\dfrac{a}{b^2}+\dfrac{b}{c^2}+\dfrac{c}{a^2}>=\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\)
MÌNH ĐÃ GIẢI THỬ RỒI VÀ KHÔNG BIẾT CÓ ĐÚNG HAY KHÔNG, CÁC BẠN CHO Ý KIẾN NHÉ VÀ GIÚP MÌNH BIẾT THÊM CÁC CÁCH GIẢI KHÁC NHÉ:
x=\(\dfrac{1}{a}\)
y=\(\dfrac{1}{b}\)
z=\(\dfrac{1}{c}\)
=> \(\dfrac{a}{b^2}+\dfrac{b}{c^2}+\dfrac{c}{a^2}=\dfrac{y^2}{x}+\dfrac{z^2}{y}+\dfrac{x^2}{z}\) *
Áp dụng bất đẳng thức schwarz ta được:
\(\dfrac{y^2}{x}+\dfrac{z^2}{y}+\dfrac{x^2}{z}>=\dfrac{\left(x+y+z\right)^2}{x+y+z}\)**
Từ * và ** suy ra \(\dfrac{a}{b^2}+\dfrac{b}{c^2}+\dfrac{c}{a^2}>=\dfrac{\left(x+y+z\right)^2}{x+y+z}=\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\)
Cho 3 số dương a, b, c. Chứng minh rằng:
\(\dfrac{1}{\dfrac{1}{a}+\dfrac{1}{b}}+\dfrac{1}{\dfrac{1}{b}+\dfrac{1}{c}}+\dfrac{1}{\dfrac{1}{c}+\dfrac{1}{a}}\le\dfrac{a+b+c}{2}\)