Rút gọn các biểu thức:
a) A= \(\frac{\sqrt[3]{135}}{\sqrt[3]{5}}-\sqrt[3]{54}\sqrt[3]{4}\)
b) B= \(\left(\frac{1}{2}\sqrt[3]{2}-\frac{1}{4}\sqrt[3]{16}\right).\sqrt[3]{4}\)
c) C= \(\sqrt[3]{\left(\sqrt{2}+1\right)\left(3+2\sqrt{2}\right)}\)
d) D= \(\sqrt[3]{3+3\sqrt[3]{2}+3\sqrt[3]{4}}\)
e) E= \(\sqrt[3]{2+\sqrt{5}}+\sqrt[3]{2-\sqrt{5}}\)
Tính giá trị các biểu thức:
a)( \(\frac{1}{2}\sqrt[3]{9}-2\sqrt[3]{3}+3\sqrt[3]{\frac{1}{3}}\)) : \(2\sqrt[3]{\frac{1}{3}}\)
b)\(\left(12\sqrt[3]{2}+\sqrt[3]{16}-2\sqrt[3]{2}\right)\left(5\sqrt[3]{4}-3\sqrt[3]{\frac{1}{2}}\right)\)
thực hiện phép tính
a)\(\left(\frac{1}{2}\sqrt[3]{9}-2\sqrt[3]{3}+3\sqrt[3]{\frac{1}{3}}\right):2\sqrt[3]{\frac{1}{3}}\)
b)\(\left(\sqrt[3]{9}-\sqrt[3]{6}+\sqrt[3]{4}\right)\left(\sqrt[3]{3}+\sqrt[3]{2}\right)\)
thực hiện phép tính
a)\(\left(\frac{1}{2}\sqrt[3]{9}-2\sqrt[3]{3}+3\sqrt[3]{\frac{1}{3}}\right):2\sqrt[3]{\frac{1}{3}}\)
b)\(\left(\sqrt[3]{9}+\sqrt[3]{6}-\sqrt[3]{4}\right)\left(\sqrt[3]{3}+\sqrt[3]{2}\right)\)
Chứng minh các đẳng thức sau :
a) \(\sqrt[3]{a^3b}=a\sqrt[3]{b}\)
b) \(\sqrt[3]{\dfrac{a}{b^2}}=\dfrac{1}{3}\sqrt[3]{ab};\left(b\ne0\right)\)
1.Chứng minh:\(\dfrac{a+\sqrt{2+\sqrt{5}.}\sqrt{\sqrt{9-4\sqrt{5}}}}{3\sqrt{2-\sqrt{5}}.\sqrt[3]{\sqrt{9+4\sqrt{5}-}3\sqrt{a^2}+\sqrt[3]{a}}}\)=\(-\sqrt[3]{a}-1\)
2.Rút gọn: \(\left(\dfrac{a^3\sqrt[]{a}-2a^3\sqrt{b}+\sqrt[3]{a^2}-\sqrt[3]{b}}{\sqrt[3]{a^2-\sqrt[3]{ab}}}+\dfrac{\sqrt[3]{a^2b}-\sqrt[3]{ab^2}}{\sqrt[3]{a}-\sqrt[3]{b}}\right)1\dfrac{1}{\sqrt[3]{a^2}}\)
🎶 Cho am3=bn3=cp3 và \(\dfrac{1}{m}+\dfrac{1}{n}+\dfrac{1}{p}=1\) . Chứng minh rằng :
\(\sqrt[3]{a}+\sqrt[3]{b}+\sqrt[3]{c}=\sqrt[3]{am^2+bn^2+cp^2}\)
Cho biểu thức B=\(\frac{1}{\sqrt[3]{2}+1}.\sqrt[3]{\frac{3}{\sqrt[3]{2}-1}}\)
Chứng minh rằng B là số nguyên.
Cho ax3 = by3 =cz3 và \(\frac{1}{x}\) + \(\frac{1}{y}\) + \(\frac{1}{z}\) = 1
C/m: \(\sqrt[3]{ax^2+by^2+cz^2}=\sqrt[3]{a}+\sqrt[3]{b}+\sqrt[3]{c}\)
Giúp mình với!! >.<
Cho a, b, c, x, y, z thoả mãn: x + y + z = 1 và \(\dfrac{a}{x^3}=\dfrac{b}{y^3}=\dfrac{c}{z^3}\). Chứng minh rằng: \(\sqrt[3]{\dfrac{a}{x^2}+\dfrac{b}{y^2}+\dfrac{c}{z^2}}=\sqrt[3]{a}+\sqrt[3]{b}+\sqrt[3]{c}\)