Cho các số thực a, b, c > 0 thỏa mãn \(a^2+b^2+c^2=\dfrac{5}{3}\)
Chứng minh rằng : \(\dfrac{1}{a}+\dfrac{1}{b}-\dfrac{1}{c}< \dfrac{1}{abc}\)
1)Cho a;b;c>0 thỏa \(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}=4\)
Chứng minh \(\dfrac{1}{2a+b+c}+\dfrac{1}{a+2b+c}+\dfrac{1}{a+b+2c}\le1\)
2) Cho a;b;c>0
CMR \(\sqrt{\dfrac{a}{b+c}}+\sqrt{\dfrac{b}{c+a}}+\sqrt{\dfrac{c}{a+b}}>2\)
Cho a;b;c>0 thỏa a+b+c=3
CMR \(\dfrac{a+b}{\sqrt{a^2+b^2+6c}}+\dfrac{b+c}{\sqrt{b^2+c^2+6a}}+\dfrac{c+a}{\sqrt{c^2+a^2+6b}}>2\)
cho a,b,c>0 và abc=1
chứng minh rằng
\(\dfrac{a+1}{a^2+a+1}+\dfrac{b+1}{b^2+b+1}+\dfrac{c+1}{c^2+c+1}\le1\)
Cho a,b,c>0 t/m abc=1
\(\dfrac{1}{\sqrt{a}+2\sqrt{b}+3}+\dfrac{1}{\sqrt{b}+2\sqrt{c}+3}+\dfrac{1}{\sqrt{c}+2\sqrt{a}+3}\le\dfrac{1}{2}\)
Cho a + b + c = 0; a,b,c \(\ne\) 0
Chứng minh đa thức \(\sqrt{\dfrac{1}{a^2}+\dfrac{1}{b^2}+\dfrac{1}{c^2}}=\left|\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\right|\)
Cho \(\dfrac{x}{a}+\dfrac{y}{b}+\dfrac{z}{c}=1\) và \(\dfrac{a}{x}+\dfrac{b}{y}+\dfrac{c}{z}=0\). Chứng minh rằng \(\dfrac{x^2}{a^2}+\dfrac{y^2}{b^2}+\dfrac{z^2}{c^2}=1\)
1.Cho x, y \(\ge\)0 và x+ y=1
Chứng minh rằng : \(x^3+y^3\ge\dfrac{1}{4}\)
2. Cho \(a,b,c\ge0\).Chứng minh rằng:
a, \(a^3+b^3>ab\left(a+b\right)\)
b, \(a^3+b^3+c^3\ge a^2b+ b^2c+c^2a\)
3. Cho x+ y+ z=3 và x, y, z>0. Chứng minh rằng:
a, \(P=\dfrac{1}{x+1}+\dfrac{1}{y+1}+\dfrac{1}{z+1}\ge\dfrac{3}{2}\)
b, \(Q=\dfrac{x}{x^2+1}+\dfrac{y}{y^2+1}+\dfrac{z}{z^2+1}\le\dfrac{3}{2}\)
cho ba số dương a,b,c .Chứng minh rằng \(\dfrac{1}{a^2\left(b+c\right)}+\dfrac{1}{b^2\left(a+c\right)}+\dfrac{1}{c^2\left(b+a\right)}\ge\dfrac{3}{2}\)
cho a,b,c>0 thỏa mãn \(\dfrac{1}{a+1}+\dfrac{1}{b+1}+\dfrac{1}{c+1}=2\)
chứng minh rằng \(\dfrac{1}{8a^2+1}+\dfrac{1}{8b^2+1}+\dfrac{1}{8c^2+1}\ge1\)