\(A\ge7\left(a+b+c\right)^2+12\left(a+b+c\right)^2+\frac{18135}{a+b+c}\)
Đặt \(a+b+c=x\Rightarrow0< x\le2\)
\(A\ge19x^2+\frac{18135}{x}=19x^2+\frac{152}{x}+\frac{152}{x}+\frac{17831}{x}\)
\(A\ge3\sqrt[3]{\frac{19.152.152x^2}{x^2}}+\frac{17831}{2}=\frac{18287}{2}\)