\(\frac{a+b}{c}\)+\(\frac{b+c}{a}\)+\(\frac{c+a}{b}\)=\(\frac{a}{c}\)+\(\frac{b}{c}\)+\(\frac{b}{a}\)+\(\frac{c}{a}\)+\(\frac{c}{b}\)+\(\frac{a}{b}\)
Vì a;b;c>0 áp dụng bất đẳng thức cosi ta có:
\(\frac{a}{c}\)+\(\frac{c}{a}\)\(\ge\)2\(\sqrt{\frac{a}{c}.\frac{c}{a}}\)=2
\(\frac{b}{c}\)+\(\frac{c}{b}\)\(\ge\)2\(\sqrt{\frac{b}{c}.\frac{c}{b}}\)=2
\(\frac{b}{a}\)+\(\frac{a}{b}\)\(\ge\)2\(\sqrt{\frac{b}{a}.\frac{a}{b}}\)=2
Cộng vế với vế ta có:
\(\frac{a}{c}\)+\(\frac{b}{c}\)+\(\frac{b}{a}\)+\(\frac{c}{a}\)+\(\frac{c}{b}\)+\(\frac{a}{b}\)\(\ge\)2+2+2
=>\(\frac{a+b}{c}\)+\(\frac{b+c}{a}\)+\(\frac{c+a}{b}\)\(\ge\)6
dấu = xảy ra a=b=c