Cho a,b,c >0 abc=1. CMR \(\frac{a^4}{b^2\left(c+a\right)}+\frac{b^4}{c^2\left(a+b\right)}+\frac{c^4}{a^2\left(b+c\right)}\ge\frac{a+b+c}{2}\)
1. CMR: \(\frac{a^2}{b^2}+\frac{b^2}{c^2}+\frac{c^2}{a^2}\ge\frac{a}{c}+\frac{c}{b}+\frac{b}{a}\)
2. Cho a, b , c >0 .CMR: \(\frac{bc}{a}+\frac{ac}{b}+\frac{ba}{c}\ge a+b+c\)
cho a,b,c >0 thỏa mãn a+b+c=3. Cmr:
\(\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)^3+abc\ge28\)
cho a,b,c> 0 . Cmr:
\(2\left(\frac{a}{b+2c}+\frac{b}{c+2a}+\frac{c}{a+2b}\right)\ge1+\frac{b}{b+2a}+\frac{c}{c+2b}+\frac{a}{a+2c}\)
cho a,b,c > 0 thỏa mãn a+b+c=abc. Cmr:
\(\frac{\sqrt{a^2+1}}{a}+\frac{\sqrt{b^2+1}}{b}-\sqrt{1+c^2}< 1\)
cho \(c\ge b\ge a>0\) . Cmr: \(\frac{2a^2}{b+c}+\frac{2b^2}{c+a}+\frac{2c^2}{a+b}\le\frac{a^2}{b}+\frac{b^2}{c}+\frac{c^2}{a}\)
Cho a,b,c > 0
CMR \(\frac{a}{b+c}+\frac{b}{c+a}+\frac{c}{a+b}\)≥ \(\frac{3}{2}\)
cho a,b,c là độ dài 3 cạnh của tam giác. CMR:
\(\frac{\sqrt{a}}{b+c-a}+\frac{\sqrt{b}}{a+c-b}+\frac{\sqrt[]{c}}{a+b-c}\ge\frac{a+b+c}{\sqrt{abc}}\)
cho a,b,c >0 và a+b+c=3 . cmr :
\(\frac{a}{\sqrt{b+c+2}}+\frac{b}{\sqrt{a+c+2}}+\frac{c}{\sqrt{a+b+2}}\ge\frac{3}{5}\)