1.Cho\(\left\{{}\begin{matrix}a,b,c>0\\a+2b+3c=20\end{matrix}\right.\)Tìm GTNN
P=\(2a+3b+4c+\dfrac{3}{a}+\dfrac{9}{2b}+\dfrac{4}{c}\)
1.\(\left\{{}\begin{matrix}a,b>0\\2a+3b=4\end{matrix}\right.\)Tìm GTNN của
M=\(\dfrac{2002}{a}+\dfrac{2017}{b}+2096a-5501b\)
a:\(\dfrac{b}{\left(a-4\right)^2}.\sqrt{\dfrac{\left(a-4\right)^4}{b^2}}\left(b>0;a\ne4\right)\)
b:\(\dfrac{x\sqrt{x}-y\sqrt{y}}{\sqrt{x}-\sqrt{y}}\left(x\ge0;y\ge0;x\ne0\right)\)
c:\(\dfrac{a}{\left(b-2\right)^2}.\sqrt{\dfrac{\left(b-2\right)^4}{a^2}\left(a>0;b\ne2\right)}\)
d:\(\dfrac{x}{\left(y-3\right)^2}.\sqrt{\dfrac{\left(y-3\right)^2}{x^2}\left(x>0;y\ne3\right)}\)
e:2x +\(\dfrac{\sqrt{1-6x+9x^2}}{3x-1}\)
P=\(\dfrac{\left(\sqrt{a^2+a\sqrt{a^2-b^2}}-\sqrt{a^2-a\sqrt{a^2-b^2}}\right)^2}{2\sqrt{a^3b}}:\left(\sqrt{\dfrac{a}{b}}+\sqrt{\dfrac{b}{a}}-2\right)\left(a>0,b>0\right)\)
a)rút gọn P
b)tính P biết a=7+\(4\sqrt{3}\) , b=7-\(4\sqrt{3}\)
a) \(\sqrt{\dfrac{-3}{5-x}}\)
b) \(\sqrt{\dfrac{4}{1-x}}\)
c) \(\sqrt{\dfrac{1}{x^2}}\)
Giải các phương trình sau:
a) \(\sqrt{x^2-4+4}=2-x\)
b) \(\sqrt{4x-8}-\dfrac{1}{5}\sqrt{25x-50}=3\sqrt{x-2}-1\)
c) \(\sqrt{x-1}+\sqrt{9x-9}-\sqrt{4x-4}=4\)
d) \(\dfrac{1}{2}\sqrt{x-2}-4\sqrt{\dfrac{4x-8}{9}}+\sqrt{9x-18}-5=0\)
e)\(\sqrt{49-28x+4x^2}-5=0\)
f) \(\sqrt{4x-20}+\sqrt{x-5}-\dfrac{1}{3}\sqrt{9x-45}=4\)
g) x2 - 4x - 2\(\sqrt{2x-5}+5=0\)
h)\(\sqrt{3x-2}=\sqrt{x+1}\)
i) x + y + z + 8 = \(2\sqrt{x-1}+4\sqrt{y-2}+6\sqrt{z-3}\)
k) \(\sqrt{x^2-3x}-\sqrt{x-3}=0\)
l)\(\sqrt{x^2-4}+\sqrt{x-2}=0\)
m) \(4\sqrt{x+1}=x^2-5x+14\)
n) \(\sqrt{x^2-6x+9}-\sqrt{4x^2+4x+1}=0\)
a) \(\dfrac{a-1}{\sqrt{b}-1}\).\(\sqrt{\dfrac{b-2\sqrt{b}+1}{\left(a-1\right).4}}\) (a,b≠1,b>0)
b) (1+\(\dfrac{a+\sqrt{a}}{\sqrt{a}+1}\)).(1-\(\dfrac{a-\sqrt{a}}{\sqrt{a-1}}\)) (a≠1,a>0)
Cho A=\(\dfrac{\sqrt{x}+2}{\sqrt{x}+1}-\dfrac{\sqrt{x}+3}{5-\sqrt{x}}-\dfrac{3x+4\sqrt{x}-5}{x-4\sqrt{x}-5}\)
a) Rút gọn A
b)Tìm tất cả các giá trị của x để A>-2
1> đưa nhân tử vào trong dấu căn trong các bthuc và rút gọn(nếu đc)
a)\(\left(2-a\right)\times\sqrt{\dfrac{2a}{a-2}}\) với a>2
b) \(\left(x-5\right)\times\sqrt{\dfrac{x}{25-x^2}}\) với 0<x<5
c) \(\left(a-b\right)\times\sqrt{\dfrac{3a}{b^2-a^2}}\) với 0<a<b
2> trục căn thức ở mẫu:
a) A= \(\dfrac{a+b}{2\sqrt{a-b}}\)
b> B= \(\dfrac{x-2}{\sqrt{x^2-4}}\)
c) C= \(\dfrac{12}{3-\sqrt{3}}\)
d) D= \(\dfrac{17}{3\sqrt{5}-2\sqrt{7}}\)