a) Ta có AB,AC là 2 tiếp tuyến của đường tròn (O;R)\(\Rightarrow AB=AC\Rightarrow\)△ABC cân tại A
b) Ta có AB,AC là 2 tiếp tuyến của đường tròn (O;R)\(\Rightarrow\widehat{FAB}=\widehat{FAC}\Rightarrow\)AF là đường phân giác của △ABC
Lại có △ABC cân tại A
Suy ra AF là đường cao của △ABC\(\Rightarrow\)\(\widehat{BFA}=90^0\) hay BF⊥AO
Ta có △ABO vuông tại B đường cao BF\(\Rightarrow BF^2=AF.FO\Rightarrow\dfrac{AF}{BF}=\dfrac{BF}{FO}\Rightarrow\dfrac{AF^2}{BF^2}=\dfrac{AF}{AO}\left(1\right)\)
Ta có \(\widehat{ABF}=90^0-\widehat{FBO}=\widehat{FOB}\)
Lại có \(\widehat{OFB}=\widehat{AFB}=90^0\)
Suy ra △BAF\(\sim\)△OBF (g-g)\(\Rightarrow\dfrac{AB}{OB}=\dfrac{AF}{BF}\Rightarrow\left(\dfrac{AB}{OB}\right)^2=\left(\dfrac{AF}{BF}\right)^2\Rightarrow\dfrac{AB^2}{OB^2}=\dfrac{AF^2}{BF^2}\left(2\right)\)
Từ (1),(2)\(\Rightarrow\dfrac{AB^2}{OB^2}=\dfrac{AF}{FO}\)
Ta có \(\widehat{COD}=90^0-\widehat{OAC}=90^0-\widehat{OAB}=90^0-\widehat{DAH}=\widehat{ADH}=\widehat{CDO}\)(đối đỉnh) hay \(\widehat{COD}=\widehat{CDO}\Rightarrow\)△COD cân tại C⇒CO=CD