\(\left(a+b\right)^3=a^3+b^3+3ab\left(a+b\right)=125\\ \Rightarrow a^3+b^3-30=125\\ \Rightarrow a^3+b^3=155\\ \dfrac{1}{a^3}+\dfrac{1}{b^3}=\dfrac{a^3+b^3}{a^3b^3}=\dfrac{155}{\left(-2\right)^3}=-\dfrac{155}{8}\\ \left(a+b\right)^2=a^2+2ab+b^2=25\\ \Rightarrow a^2+b^2-4=25\Rightarrow a^2+b^2=29\\ \left(a-b\right)^2=a^2-2ab+b^2=29-2\left(-2\right)=33\\ \Rightarrow a-b=\sqrt{33}\)
\(a^3-b^3=\left(a-b\right)^3+3ab\left(a-b\right)=\sqrt{33^3}+3\left(-2\right)\sqrt{33}=33\sqrt{33}-6\sqrt{33}\)