Cho a,b,c,d nguyên dương đôi 1 khác nhau thỏa mãn: \(\dfrac{2a+b}{a+b}+\dfrac{2b+c}{b+c}+\dfrac{2c+d}{c+d}+\dfrac{2d+a}{d+a}=6\)
CMR:abcd là số chính phương
Cho các số a, b, c dương nguyên đôi một khác nhau và thỏa mãn:
\(\dfrac{2a+b}{a+b}+\dfrac{2b+c}{b+c}+\dfrac{2c+d}{c+d}+\dfrac{2d+a}{d+a}=6\)
Chứng minh A=abcd là số chính phương
Cho a, b, c là các số thực dương. CMR:
\(\frac{ab}{a+3b+2c}+\frac{bc}{b+3c+2a}+\frac{ca}{c+3a+2b}< \frac{a+b+c}{6}\)
Cho a, b, c > 0. CMR :
\(\frac{a^2+b^2}{2c}+\frac{b^2+c^2}{2a}+\frac{c^2+a^2}{2b}\le\frac{a^3}{bc}+\frac{b^3}{ca}+\frac{c^3}{ab}\)
cho tứ giác ABCD có AB=a; BC=b; CD=c; DA=d (a,b,c,d > 0 thỏa \(a^2+b^2+c^2+d^2=\left(a+c\right)\left(b+d\right)\)
a) tứ giác ABCD có gì đặc biệt?
b) nếu cho thêm giả thiết AC*BD=ab+cd khi đó tính các góc của ABCD
cho 4 số nguyên a,b,c,d thỏa mãn a+b=c+d và ab+1 =cd cm c=d
cho a, b, c ∈ [0,1]. CMR: \(a^2+b^2+c^2\le1+a^2b+b^2c+c^2a\)
Cho a + b + c = 0. CMR \(a^4+b^4+c^4=2\left(a^2b^2+b^2c^2+c^2a^2\right)=2\left(ab+bc+ca\right)^2=\dfrac{\left(a^2+b^2+c^2\right)^2}{2}\)
Cho a, b, c > 0. Chứng minh rằng :
\(a+b+c\le\frac{a^2+b^2}{2c}+\frac{b^2+c^2}{2a}+\frac{c^2+a^2}{2b}\le\frac{a^3}{bc}+\frac{b^3}{ca}+\frac{c^3}{ab}\)