tìm min hay max vậy t chỉ biết tìm max thôi
tìm min hay max vậy t chỉ biết tìm max thôi
Cho a,b,c >0.Chứng minh:
\(P=\dfrac{a^2b}{ab^2+1}+\dfrac{b^2c}{bc^2+1}+\dfrac{c^2a}{ca^2+1}\ge\dfrac{3abc}{1+abc}\)
Rút gọn và tính giá trị các biểu thức :
a, \(\sqrt{\dfrac{3+\sqrt{5}}{2x^2}}-\sqrt{\dfrac{3-\sqrt{5}}{2}}\left(x>0\right)T\text{ại}:x=1\)
\(b,\dfrac{\sqrt{a^3+4a^2+4a}}{\sqrt{a\left(a^2-2ab+b^2\right)}}-\dfrac{\sqrt{b^3-4b^2+4b}}{\sqrt{b\left(a^2-2ab+b^2\right)}}+ab\) ( a > b > 2 ) tại a = 4 ; b = 3
c, \(ab^2.\sqrt{\dfrac{4}{a^2.b^4}}+ab\left(a;b\ne0;a>0\right)\) Tại a = 1 ; b = - 2
d,\(\dfrac{a+b}{b^2}.\sqrt{\dfrac{a^2b^2}{a^2+2ab+b^2}}\left(a;b>0\right)\) Tại a = 1 ; b = 2
Cho a,b,c > 0 và 15(\(\dfrac{1}{a^2}\)+\(\dfrac{1}{b^2}\)+\(\dfrac{1}{c^2}\))=3+\(\dfrac{1}{a}\)+\(\dfrac{1}{b}\)+\(\dfrac{1}{c}\).
Tìm max P=\(\dfrac{1}{\sqrt{5a^2+2ab+2b^2}}\)+\(\dfrac{1}{\sqrt{5b^2+2bc+2c^2}}\)+\(\dfrac{1}{\sqrt{5c^2+2ca+2a^2}}\)
Cho a,b,c > 0. Tìm GTNN:
a, \(A=\dfrac{a^2}{2b+5c}+\dfrac{b^2}{2c+5a}+\dfrac{c^2}{2a+5b}\) với abc = 8
b, \(B=\dfrac{b+c}{a^2}+\dfrac{c+a}{b^2}+\dfrac{a+b}{c^2}\) với abc = 1
c, \(C=\dfrac{a+bc}{b+c}+\dfrac{b+ca}{c+a}+\dfrac{c+ab}{a+b}\) với a + b + c = 1
d, \(D=\dfrac{a^3}{2b+3c}+\dfrac{b^3}{2c+3a}+\dfrac{c^3}{2a+3b}\) với \(a^2+b^2+c^2\ge3\)
Cho a,b,c >0 thỏa a+b+c \(\ge9\)
Tìm Min:
\(P=2\sqrt{a^2+\dfrac{b^2}{3}+\dfrac{c^2}{5}}+\sqrt{\dfrac{1}{a}+\dfrac{9}{b}+\dfrac{25}{c}}\)
c/m bất đảng thức :
a)\(\dfrac{a}{3b}+\dfrac{b\left(a+b\right)}{a^2+ab+b^2}\)
b)\(\dfrac{a}{b^2}+\dfrac{b}{a^2}+\dfrac{16}{a+b}\ge5\left(\dfrac{1}{a}+\dfrac{1}{b}\right)\)
c)\(\dfrac{a}{2b}+\dfrac{2b}{a+b}\)+\(\dfrac{ab^2}{2\left(a^3+2b^3\right)}\ge\dfrac{5}{3}\)
d)\(\dfrac{a}{4b^2}+\dfrac{2b}{\left(a+b\right)^2}\ge\dfrac{9}{4\left(a+2b\right)}\)
e)\(\dfrac{2}{a^2+ab+b^2}+\dfrac{1}{3b^2}\ge\dfrac{9}{\left(a+2b\right)^2}\)
cho a,b,c>0
CMR:
1) \(a+b+\dfrac{1}{4}\ge\sqrt{a+b}\)
2) \(\left(a+b+\dfrac{1}{2}\right)^2+\left(b+c+\dfrac{1}{2}\right)^2+\left(c+a+\dfrac{1}{2}\right)^2\ge4\left(\dfrac{1}{\dfrac{1}{a}+\dfrac{1}{b}}+\dfrac{1}{\dfrac{1}{b}+\dfrac{1}{c}}+\dfrac{1}{\dfrac{1}{c}+\dfrac{1}{a}}\right)\)
Câu 1 ) Cho \(a,b,c\in R\) . Chứng minh rằng :
M=\(\left(a^2+1\right)\left(b^2+1\right)\left(c^2+1\right)\ge\dfrac{3\left(a+b+c\right)^2}{4}\)
Câu 2 ) Cho \(a>0;b>0;a+b\le1\) . Tìm GTNN của biểu thức :
A = \(\dfrac{2}{a^2+b^2}+\dfrac{35}{ab}+2ab\)
Câu 3) Cho \(a>0;b>0\) . Chứng minh rằng : \(\left(4a^2+b^2\right)\left(\dfrac{1}{a^2}+\dfrac{1}{4b^2}\right)\ge4\)
Cho a,b,c >0 thỏa \(a^2+b^2+c^2=1.CMR:\)
\(P=\dfrac{bc}{a^2+1}+\dfrac{ca}{b^2+1}+\dfrac{ab}{c^2+1}\le\dfrac{3}{4}\)