A=\(\dfrac{a^2+b^2+2ab+ab}{\sqrt{ab}\left(a+b\right)}=\dfrac{\left(a+b\right)^2+ab}{\sqrt{ab}\left(a+b\right)}\) =\(\dfrac{a+b}{\sqrt{ab}}+\dfrac{\sqrt{ab}}{a+b}=\dfrac{a+b}{\sqrt{ab}}+\dfrac{4\sqrt{ab}}{a+b}-\dfrac{3\sqrt{ab}}{a+b}\)
\(\ge2\sqrt{\dfrac{a+b}{\sqrt{ab}}.\dfrac{4\sqrt{ab}}{a+b}}-\dfrac{3\sqrt{ab}}{a+b}\) =\(\ge4-\dfrac{3\left(a+b\right)}{2\left(a+b\right)}=4-\dfrac{3}{2}=\dfrac{5}{2}\)
dấu = xảy ra khi a=b