\(a-b=ab\Leftrightarrow\left(a-b\right)^2=\left(ab\right)^2\)
\(\Leftrightarrow a^2-2ab+b^2=a^2b^2\)
\(\Leftrightarrow a^2-2ab+b^2-a^2b^2=0\)
\(\frac{a}{b}+\frac{b}{a}-ab\)
\(\Leftrightarrow\left(\frac{a^2}{ab}+\frac{b^2}{ab}-\frac{a^2b^2}{ab}\right)\Leftrightarrow\left(\frac{a^2+b^2-a^2b^2}{ab}\right)\)
Mà \(a^2+b^2=a^2-2ab+b^2+2ab\)
Vậy: \(\frac{a^2+b^2-a^2b^2}{ab}=\frac{a^2-2ab+b^2-a^2b^2+2ab}{ab}=\frac{2ab}{ab}=2\)