Đại số lớp 8

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Vũ Anh Quân

Cho a,b,c là các số thực dương thỏa mãn : \(a+b+c\le6\) .Tìm giá trị lớn nhất của \(P=\frac{ab}{a+3b+2c}+\frac{bc}{b+3c+2a}+\frac{ca}{c+3a+2b}\)

HELP ME....MAI MÌNH NỘP RỒI

mình cảm ơn

Truy kích
27 tháng 11 2016 lúc 20:37

Áp dụng BĐT Cauchy-Schwarz ta có:

\(\frac{bc}{a+3b+2c}\le\frac{1}{9}\left(\frac{bc}{a+b}+\frac{bc}{b+c}+\frac{c}{2}\right)\)

\(\frac{ca}{b+3c+2a}\le\frac{1}{9}\left(\frac{ca}{b+c}+\frac{ca}{c+a}+\frac{a}{2}\right)\)

\(\frac{ab}{c+3a+2b}\le\frac{1}{9}\left(\frac{ab}{c+a}+\frac{ab}{a+b}+\frac{b}{2}\right)\)

Cộng theo vế của 3 BĐT ta có:

\(VT\le\frac{1}{9}\left(\frac{a+b+c}{2}+\frac{ca+ab}{a+c}+\frac{ab+bc}{a+b}+\frac{bc+ca}{b+c}\right)\)

\(=\frac{1}{9}\left(a+b+c+\frac{a+b+c}{2}\right)=1\)

Dấu "=" khi a=b=c=2

Truy kích
27 tháng 11 2016 lúc 20:18

chờ tí mk lm nốt btvn hẵng


Các câu hỏi tương tự
Vũ Anh Quân
Xem chi tiết
Vũ Anh Quân
Xem chi tiết
Vũ Anh Quân
Xem chi tiết
No ri do
Xem chi tiết
Vũ Anh Quân
Xem chi tiết
Vũ Anh Quân
Xem chi tiết
thanh ngọc
Xem chi tiết
Vũ Anh Quân
Xem chi tiết
thanh ngọc
Xem chi tiết