Cho 3 số thực dương a,b,c thoả mãn a+b+c=3.CMR (a³+ab²):(a²+b+b²) + (b³+bc²):(b²+c+c²) + (c³+ca²):(c²+a+a²) >=2
Cho a,b là hai số dương thỏa mãn \(\sqrt{ab}=\dfrac{a+b}{a-b}\) .Tìm \(MinP=ab+\dfrac{a-b}{\sqrt{ab}}\)
Cho a,b là các số thực dương thỏa mãn ab=1. Tìm GTNN của:
\(P=\dfrac{a^2}{1+b}+\dfrac{b^2}{1+a}\)
Cho các số thực dương a,b,c thỏa mãn abc = 1. Chứng minh rằng \(\dfrac{ab}{a^4+b^4+ab}\) + \(\dfrac{bc}{b^4+c^4+bc}\) + \(\dfrac{ca}{c^4+a^4+ca}\) ≤ 1
Cho 3 số a,b,c thỏa mãn ab + bc + ca = 1. CMR:
\(\dfrac{a-b}{1+c^2}+\dfrac{b-c}{1+a^2}+\dfrac{c-a}{1+b^2}=0\)
Cho a,b,c là các số thực dương thỏa mãn điều kiện a+b+c=1. Tìm GTNN của
P=\(\sqrt{a^2+ab+b^2}+\sqrt{b^2+bc+b^2}+\sqrt{c^2+ac+a^2}\)
Cho hai số thực dương a, b thỏa mãn \(a+2b\ge3\). Tìm giá trị nhỏ nhất của biểu thức \(P=\dfrac{3a^2+a^2b+\dfrac{9}{2}ab^2+\left(8+a\right)b^3}{ab}\)
Cho hai số dương a,b thỏa mãn a + 2b = 1. Chứng minh rằng \(\dfrac{1}{ab}\) + \(\dfrac{3}{a^2+4b^2}\) ≥ 14
rút gọn : với a,b dương, ab ≠ 0
\(\dfrac{a\sqrt{a}+b\sqrt{b}}{\sqrt{ab}}.\dfrac{1}{\sqrt{a}+\sqrt{b}}\)