cho a,b ,c,d là các số thực tm \(\left\{{}\begin{matrix}a^2+b^2=1\\c+d=6\end{matrix}\right.\)
CMR \(c^2+d^2-2ac-2bd\ge18-6\sqrt{2}\)
bài 2 : trong mặt phẳng Oxy cho 2 đường thẳng d1,d2 có pt lần lượt là x+y-2=0 và x+y-8=0.điểm A(2,2) tìm tọa độ B ,C thuộc d1,d2 sao cho tam giác ABC vuông cân tại A
giúp mình với
Câu 1:
\(a^2+b^2=1\Rightarrow\left(a+b\right)^2\le2\left(a^2+b^2\right)=2\Rightarrow a+b\le\sqrt{2}\)
\(P=c^2-2ac+a^2+d^2-2bd+b^2-\left(a^2+b^2\right)\)
\(P=\left(c-a\right)^2+\left(d-b\right)^2-1\ge\frac{1}{2}\left(c-a+d-b\right)^2-1\)
\(P\ge\frac{1}{2}\left(6-\sqrt{2}\right)^2-1=18-6\sqrt{2}\)
Dấu "=" xảy ra khi \(\left\{{}\begin{matrix}a=b=\frac{1}{\sqrt{2}}\\c=d=3\end{matrix}\right.\)
Câu 2:
Gọi \(B\in d_1\Rightarrow B\left(a;2-a\right)\Rightarrow\overrightarrow{AB}=\left(a-2;-a\right)\)
\(C\in d_2\Rightarrow C\left(c;8-c\right)\Rightarrow\overrightarrow{AC}=\left(c-2;6-c\right)\)
Để tam giác ABC vuông cân tại A thì:
\(\left\{{}\begin{matrix}\overrightarrow{AB}.\overrightarrow{AC}=0\\AB^2=AC^2\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}\left(a-2\right)\left(c-2\right)-a\left(6-c\right)=0\\\left(a-2\right)^2+a^2=\left(c-2\right)^2+\left(6-c\right)^2\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}ac-4a-c+2=0\\a^2-2a=c^2-8c+18\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}\left(a-1\right)\left(c-4\right)=2\\\left(a-1\right)^2=\left(c-4\right)^2+3\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}a=3;c=5\\a=-1;c=3\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}B\left(3;-1\right);C\left(5;3\right)\\B\left(-1;3\right);C\left(3;5\right)\end{matrix}\right.\)