Áp dụng bất đẳng thức Cô-si:
\(\frac{1}{\sqrt{1\cdot1999}}\ge\frac{1}{\frac{1+1999}{2}}=\frac{1}{1000}\)
Vì dấu "=" không xảy ra nên \(\frac{1}{\sqrt{1\cdot1999}}>\frac{1}{1000}\)
Tương tự ta có : \(\frac{1}{\sqrt{2\cdot1998}}>\frac{1}{1000};...;\frac{1}{\sqrt{1999\cdot1}}>\frac{1}{1000}\)
\(\Rightarrow\frac{1}{\sqrt{1\cdot1999}}+\frac{1}{\sqrt{2\cdot1998}}+...+\frac{1}{\sqrt{1999\cdot1}}>\frac{2000}{1000}=2>1,999\)
Vậy...