Câu hỏi thì không trả lời mà toàn zô đây bình luận. Haizzz....Thế này phải đổi HOC24 thành CHAT24 thì đúng hơn đó
Câu hỏi thì không trả lời mà toàn zô đây bình luận. Haizzz....Thế này phải đổi HOC24 thành CHAT24 thì đúng hơn đó
cho A= \(\frac{1}{1.2^2}+\frac{1}{2.3^2}+\frac{1}{3.4^2}+...+\frac{1}{49.50^2}\)
B= \(\frac{1}{2^{ }}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{50^2}\)
Chứng minh : A < \(\frac{1}{2}\)<B
Chứng minh rằng:
\(\frac{1}{1.2}+\frac{1}{3.4}+\frac{1}{5.6}+....+\frac{1}{49.50}=\frac{1}{26}+\frac{1}{27}+\frac{1}{28}+...+\frac{1}{50}\)
Chứng minh rằng:
\(\frac{1}{1.2}+\frac{1}{3.4}+\frac{1}{5.6}+...+\frac{1}{49.50}=\frac{1}{26}+\frac{1}{27}+\frac{1}{28}+...+\frac{1}{50}\)
hép mi
Rút gọn:
a/ \(A=\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{2009.2000}\)
b/ \(B=\frac{1}{1.2.3}+\frac{1}{2.3.4}+\frac{1}{3.4.5}+...+\frac{1}{1998.1999.2000}\)
c/ \(C=\frac{1}{2.4}+\frac{1}{4.6}+\frac{1}{6.8}+...+\frac{1}{2006.2008}\)
chứng minh rằng:
\(\frac{1.2-1}{2!}+\frac{2.3-1}{3!}+\frac{3.4-1}{4!}+...+\frac{99.100-1}{100!}< 2\)
mình ngu toán chúng minh (hép mi)
cho A = \(\frac{1}{1.2}+\frac{1}{3.4}+...+\frac{1}{99.100}\)
CMR \(\frac{7}{12}< A< \frac{5}{6}\)
1,Tìm GTNN của
C= 2|x-3|+2x+5
D=|x+1|+|x-5|
2, Tính \(\frac{A}{B}\)
A=\(\frac{1}{1.2}+\frac{1}{3.4}+\frac{1}{4.5}+.....+\frac{1}{19.20}\)
B=\(\frac{1}{11}+\frac{1}{12}+\frac{1}{13}+..........+\frac{1}{19}+\frac{1}{20}\)
Ai giải được bài nào thì giải giúp mk vs (viết đầy đủ giúp mk tí )
Cho \(M=\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{99.100}\)
\(N=\frac{2016}{51}+\frac{2016}{52}+...+\frac{2016}{100}\)
CMR N chia hết cho M.
Cho bốn số nguyên dương \(a,b,c,d\) trong đó \(b\) là trung bình cộng của \(a,b,c,d\) đồng thời :
\(\frac{1}{c}=\frac{1}{3}.\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\)
Chứng minh rằng : bốn số \(a,b,c,d\) lập thành tỉ lệ thức .