Lời giải:
$ab-ac+bc-c^2=-1$
$\Leftrightarrow (ab-ac)+(bc-c^2)=-1$
$\Leftrightarrow a(b-c)+c(b-c)=-1$
$\Leftrightarrow (a+c)(b-c)=-1$
Do $a,b,c\in\mathbb{Z}$ nên $a+c,b-c\in\mathbb{Z}$
Do đó có 2 TH xảy ra.
TH1: $a+c=1; b-c=-1$
$\Rightarrow a+c+b-c=0$
$\Rightarrow a+b=0$ nên $a,b$ là 2 số đối nhau (đpcm)
TH2: $a+c=-1; b-c=1$: hoàn toàn tương tự.
Vậy........
ab−ac+bc−c2=−1ab−ac+bc−c2=−1
⇔(ab−ac)+(bc−c2)=−1⇔(ab−ac)+(bc−c2)=−1
⇔a(b−c)+c(b−c)=−1⇔a(b−c)+c(b−c)=−1
⇔(a+c)(b−c)=−1⇔(a+c)(b−c)=−1
Do a,b,c∈Za,b,c∈Z nên a+c,b−c∈Za+c,b−c∈Z
Do đó có 2 TH xảy ra.
TH1: a+c=1;b−c=−1a+c=1;b−c=−1
⇒a+c+b−c=0⇒a+c+b−c=0
⇒a+b=0⇒a+b=0 nên a,ba,b là 2 số đối nhau (đpcm)
TH2: a+c=−1;b−c=1a+c=−1;b−c=1: hoàn toàn tương tự.
Vậy........