cho a,b,c là số thực dương. Cmr:
1.\(\dfrac{a}{b^2+bc+c^2}+\dfrac{b}{c^2+ca+a^2}+\dfrac{c}{a^2+ab+b^2}\ge\dfrac{a+b+c}{ab+bc+ca}\)
2.\(\left(a+b+c\right)\left(\dfrac{a}{\left(b+c\right)^2}+\dfrac{b}{\left(c+a\right)^2}+\dfrac{c}{\left(a+b\right)^2}\right)\ge\dfrac{9}{4}\)
1)cho a,b,c >0. \(cmr:\dfrac{1}{a^2+bc}+\dfrac{1}{b^2+ca}+\dfrac{1}{c^2+ab}\le\dfrac{a+b+c}{2abc}\)
2) cho a,b,c>0 và a+b+c=1. \(cmr:\left(1+\dfrac{1}{a}\right)\left(1+\dfrac{1}{b}\right)\left(1+\dfrac{1}{c}\right)\ge64\)
3) cho a,b,c>0. \(cme:\dfrac{a^2}{b^2}+\dfrac{b^2}{c^2}+\dfrac{c^2}{a^2}\ge\dfrac{a}{b}+\dfrac{b}{c}+\dfrac{c}{a}\)
4) cho a,b,c>0 .\(cmr:\dfrac{a^3}{b^3}+\dfrac{b^3}{c^3}+\dfrac{c^3}{a^3}\ge\dfrac{a^2}{b^2}+\dfrac{b^2}{c^2}+\dfrac{c^2}{a^2}\)
5)cho a,b,c>0. cmr: \(\dfrac{1}{a\left(a+b\right)}+\dfrac{1}{b\left(b+c\right)}+\dfrac{1}{c\left(c+a\right)}\ge\dfrac{27}{2\left(a+b+c\right)^2}\)
cho a,b,c là các số thực dương. Cmr
\(\left(a^2+3\right)\left(b^2+3\right)\left(c^2+3\right)\ge4\left(a+b+c+1\right)^2\)
\(\left(a^2+1\right)\left(b^2+1\right)\left(c^2+1\right)\ge\dfrac{5}{16}\left(a+b+c+1\right)^2\)
Cho \(a;b;c\) là các số thực dương thỏa mãn :\(0< a;b;c< 1\). Chứng minh rằng:
\(\dfrac{1}{a.\left(1-b\right)}+\dfrac{1}{b.\left(1-c\right)}+\dfrac{1}{c.\left(1-a\right)}\ge\dfrac{3}{1-\left(a+b+c\right)+ab+bc+ac}\)
P/s: Đề cương toán lớp 10 trường THPT chuyên sư phạm Hà Nội.
Em xin nhờ quý thầy cô giáo và các bạn giúp đỡ, em cám ơn nhiều ạ!
Cho ba số thực không âm \(a;b;c\) và thỏa mãn \(\sqrt{a}+\sqrt{b}+\sqrt{c}=3\). Chứng minh rằng :
\(\sqrt{\left(a+b+1\right).\left(c+2\right)}+\sqrt{\left(b+c+1\right).\left(a+2\right)}+\sqrt{\left(c+a+1\right).\left(b+2\right)}\ge9\)
P/s: Em xin phép nhờ quý thầy cô giáo và các bạn giúp đỡ, em cám ơn rất nhiều ạ!
cho a,b,c là các số thực dương. Cmr
\(\dfrac{a^4}{b^3\left(c+a\right)}+\dfrac{b^4}{c^3\left(a+b\right)}+\dfrac{c^4}{a^3\left(b+c\right)}\ge\dfrac{3}{2}\)
Cho a;b;c>0.CMR:
\(\sqrt[3]{\frac{a^2+bc}{abc\left(b^2+c^2\right)}}+\sqrt[3]{\frac{b^2+ca}{abc\left(c^2+a^2\right)}}+\sqrt[3]{\frac{c^2+ab}{abc\left(a^2+b^2\right)}}\ge\frac{9}{a+b+c}\)
cho a,b,c > 0 thỏa mãn \(a^2+b^2+c^2=3\)
CMR \(P=\sqrt{\dfrac{9}{\left(a+b\right)^2}+c^2}+\sqrt{\dfrac{9}{\left(b+c\right)^2}+a^2}+\sqrt{\dfrac{9}{\left(c+a\right)^2}+b^2}\ge\dfrac{3\sqrt{13}}{2}\)
Cho a,b,c là các số thực dương thỏa mãn a+b+c=1. Chứng minhh rằng:
\(\left(1+ab+bc+ca\right)\left(\dfrac{1}{a+bc}+\dfrac{1}{b+ca}+\dfrac{1}{c+ab}\right)\le\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\)