Game này ez thôi bạn
\(bđt\Leftrightarrow\frac{a}{a+2}+\frac{b}{b+2}+\frac{c}{c+2}\ge1\)
\(\left(a;b;c\right)\rightarrow\left(\frac{x}{y};\frac{y}{z};\frac{z}{x}\right)\Rightarrow bđt\Leftrightarrow\sum\frac{x}{x+2y}\ge1\)
Bđt trên đúng do: \(\sum\frac{x}{x+2y}\ge\frac{\left(x+y+z\right)^2}{\left(x+y+z\right)^2}=1\rightarrowđpcm\)
\("="\Leftrightarrow a=b=c=1\)