a) Ta có: a<b
\(\Leftrightarrow ac< bc\)
\(\Leftrightarrow ac+ab< bc+ab\)
\(\Leftrightarrow a\left(b+c\right)< b\left(a+c\right)\)
hay \(\frac{a}{b}< \frac{a+c}{b+c}\)(đpcm)
b) Ta có: \(\frac{a}{a+b}>\frac{a}{a+b+c}\)
\(\frac{b}{b+c}>\frac{b}{a+b+c}\)
\(\frac{c}{c+a}>\frac{c}{a+b+c}\)
Cộng vế theo vế, ta được:
\(\frac{a}{a+b}+\frac{b}{b+c}+\frac{c}{c+a}>\frac{a+b+c}{a+b+c}=1\)
hay \(1< \frac{a}{a+b}+\frac{b}{b+c}+\frac{c}{c+a}\)(1)
Ta có: \(\frac{a}{a+b}< \frac{a+c}{a+b+c}\)
\(\frac{b}{b+c}< \frac{b+a}{a+b+c}\)
\(\frac{c}{c+a}< \frac{c+b}{a+b+c}\)
Cộng vế theo vế, ta được:
\(\frac{a}{a+b}+\frac{b}{b+c}+\frac{c}{c+a}< \frac{a+c+b+c+a+b}{a+b+c}=2\)(2)
Từ (1) và (2) suy ra \(1< A< 2\)
hay A không phải là số nguyên(đpcm)