CHo \(a\in\left[0;1\right].CM:a+b^2+c^2-ab-bc-ca\le1\)
Cho 3 số thực a,b,c chứng minh rằng:
\(ab\left(b^2+bc+ca\right)+bc\left(c^2+ac+ab\right)+ca\left(a^2+ab+bc\right)\le\left(ab+bc+ca\right)\left(a^2+b^2+c^2\right)\)
cho \(0\le a,b\le1\)chứng minh \(a^4+b^3+c^2-ab-bc-ac\le1\)
Cho a,b,c >0 ; a+b+c = 6abc . Chứng minh rằng : \(\frac{bc}{a^3\left(c+2b\right)}+\frac{ac}{b^3\left(a+2c\right)}+\frac{ab}{c^3\left(b+2a\right)}\)≥2
1) Cho ba số a, b, c \(\in\) [0;1] (nghĩa là từng số lớn hơn hoặc bằng 0 và bé hơn hoặc bằng 1). Chứng minh rằng: \(ab\le a^ab^b\).
2a0 Cho a, b, c, thỏa mãn \(a+b+c=1\). Chứng minh rằng: \(\dfrac{1}{3^a}+\dfrac{1}{3^b}+\dfrac{1}{3^c}\ge3\left(\dfrac{a}{3^a}+\dfrac{b}{3^b}+\dfrac{c}{3^c}\right)\)
Cho a,b,c>0 và \(a^2b+b^2c+c^2a=3\)
Chứng minh rằng : \(\frac{ab+bc+ca}{2\left(a^2+b^2+c^2\right)}+\frac{1}{6}\left(\frac{a}{bc}+\frac{b}{ac}+\frac{c}{ab}\right)\)≥\(\frac{a+b+c}{3}\)
Cho \(a,b,c\in\left(0;1\right)\). Tìm GTLN của biểu thức:
\(f\left(a,b,c\right)=a+b+c-ab-ac-bc\)
1.Cho các số a, b, c \(\in\left[0;1\right]\). Cmr: \(a+b^2+c^3-ab-bc-ca\le1\)
2. Cho x>0, y>0 và \(x+y\ge6\). Tìm min của \(P=3x+2y+\frac{6}{x}+\frac{8}{y}\)
Cho \(a,b,c\le1\). C\m :
\(\dfrac{a\left(b+c\right)}{bc\left(1+a\right)}+\dfrac{b\left(a+c\right)}{ac\left(1+b\right)}+\dfrac{a\left(a+b\right)}{ab\left(1+c\right)}\ge\dfrac{6}{1+\sqrt[3]{abc}}\)