Cho \(a,b>0;c\ne0\)
CMR: \(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}=0\Leftrightarrow\sqrt{a+b}=\sqrt{a+c}+\sqrt{b+c}\)
Cho a>0; b>0; c>0. CMR:
\(\dfrac{1}{a+b}+\dfrac{1}{b+c}+\dfrac{1}{a+c}\ge\dfrac{3}{a+b+c}\)
Cho: \(\left(a+b+c\right)^2=a^2+b^2+c^2\) và a, b, c khác 0. CMR: \(\dfrac{1}{a^3}+\dfrac{1}{b^3}+\dfrac{1}{c^3}=\dfrac{3}{abc}\)
Cho: \(\left(a+b+c\right)^2=a^2+b^2+c^2\) và a,b, c khác 0. CMR: \(\dfrac{1}{a^3}+\dfrac{1}{b^3}+\dfrac{1}{c^3}=\dfrac{3}{abc}\)
Cho a,b,c > 0 . CMR :
a) \(\dfrac{a}{b^2}+\dfrac{b}{c^2}+\dfrac{c}{a^2}\) ≥ \(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\)
Cho \(a;b;c>0\). CMR:
\(\dfrac{a+b}{a^2+bc}+\dfrac{b+c}{b^2+ca}+\dfrac{c+a}{c^2+ab}\le\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\)
1. Cho a;b;c > 0. Tìm giá trị nhỏ nhất:
\(A=\left(a+b+c\right)\left(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\right)\)
2. a) Cho x > 0, y > 0. CMR: \(\dfrac{1}{x}+\dfrac{1}{y}\ge\dfrac{1}{x+y}\)
b) Cho a, b, c là độ dài ba cạnh của một tam giác. Chứng minh:
\(\dfrac{1}{a+b-c}+\dfrac{1}{b+c-a}+\dfrac{1}{c+a-b}\ge\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\)
cho a,b,c>0 và abc=1
CMR: \(\dfrac{a-1}{c}+\dfrac{c-1}{b}+\dfrac{b-1}{a}\) ≥ 0
Cho: \(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}=0\) và a, b, c \(\ne\) 0
\(A=\dfrac{b^2c^2}{a}+\dfrac{c^2a^2}{b}+\dfrac{a^2b^2}{c}\)
CMR: 3abc = A
Cho: \(\dfrac{a}{c}=\dfrac{a-b}{b-c},a\ne0,c\ne0,a-b\ne0,b-c\ne0\). CMR: \(\dfrac{1}{a}+\dfrac{1}{a-b}=\dfrac{1}{b-c}-\dfrac{1}{c}\)