Ta có:
\(a+b+c=1\)
\(\Rightarrow\left(a+b+c\right)^2=1\)
\(\Rightarrow a^2+b^2+c^2+2ab+2ac+2bc=1\)
\(\Rightarrow2ab+2ac+2bc=1-a^2-b^2-c^2\)
\(\Rightarrow2\left(ab+ac+bc\right)=1-a^2-b^2-c^2\)
Vì \(1-a^2-b^2-c^2< 1\)
\(\Rightarrow2\left(ab+ac+bc\right)< 1\)
\(\Rightarrow ab+ac+bc< \dfrac{1}{2}\)
a + b + c =1 ⇔ (a + b + c)2 = 1
⇔ a2 + b2 + c2 + 2ab +2ac +2bc = 1
⇔2(ab + bc +ca) = 1 - a2 + b2 + c2
⇒2(ab + bc + ca) < 1
⇔ ab + bc +ca < \(\dfrac{1}{2}\)