Lời giải:
a) Áp dụng BĐT Bunhiacopxky:
\(\text{VT}=(\sqrt{a^3}^2+\sqrt{b^3}^2+\sqrt{c^3}^2)\left (\sqrt{\frac{1}{a}}^2+\sqrt{\frac{1}{b}}^2+\sqrt{\frac{1}{c}}^2\right)\geq (\sqrt{a^2}+\sqrt{b^2}+\sqrt{c^2})^2\)
\(\Leftrightarrow \text{VT}\geq (a+b+c)^2\) (đpcm)
b)
Khai triển ta có:
\(3(a^3+b^3+c^3)\geq (a^2+b^2+c^2)(a+b+c)\)
\(\Leftrightarrow 2(a^3+b^3+c^3)\geq ab(a+b)+bc(b+c)+ac(a+c)\)
Áp dụng BĐT Cauchy:
\(a^3+a^3+b^3\geq 3\sqrt[3]{a^6b^3}=3a^2b\)
\(b^3+b^3+c^3\geq 3\sqrt[3]{b^6c3}=3b^2c\)
\(c^3+c^3+a^3\geq 3\sqrt[3]{c^6a^3}=3c^2a\)
Cộng theo vế và rút gọn:
\(\Rightarrow a^3+b^3+c^3\geq a^2b+b^2c+c^2a\)
Hoàn toàn tương tự, ta cũng cm được: \(a^3+b^3+c^3+ab^2+bc^2+ca^2\)
Suy ra \(2(a^3+b^3+c^3)\geq ab(a+b)+bc(b+c)+ac(c+a)\)
Do đó ta có đpcm.
Dấu bằng xảy ra khi $a=b=c$