Ta có :
\(a^3+b^3+c^3=3abc\)
\(\Rightarrow\left(a+b\right)^3-3ab\left(a+b\right)+c^3-3abc=0\)
\(\Rightarrow\left(a+b+c\right)\left[\left(a+b\right)^2-\left(a+b\right)c+c^2\right]-3ab\left(b+c+a\right)=0\)
\(\Rightarrow\left(a+b+c\right)\left(a^2+b^2+c^2-ab-bc-ca\right)=0\)
Mà đẳng thức (a+b+c)(a2+b2+c2 - ab - bc ca ) = 0 đúng vì a+b+c = 0
=> \(a^3+b^3+c^3=3abc\)
Ta có :
a3 + b3 + c3 = 3abc
↔ a3 + b3 + c3 - 3abc =0
↔ (a + b)3 - 3ab(a+b) + c3 - 3abc = 0
↔ (a + b)3 - 3ab(a + b + c) + c3 = 0
↔ [ (a + b)3 + c3 ] - 3ab(a + b + c) = 0
↔ (a + b + c) [ (a + b)2 + c2 - c(a + b) ] - 3ab(a + b + c) = 0
↔ (a + b + c) [ (a + b)2 + c2 - c(a + b) - 3ab ] = 0
Mà a + b + c = 0 → đpcm
Vậy a3 + b3 + c3 = 3abc
Từ giả thiết ta có: a+b+c=0 \(\Rightarrow\)a+b= -c
Do đó (a+b)3=(-c)3
\(\Leftrightarrow\) a3+3a2b+3ab2+c3=-c3
\(\Leftrightarrow\) a3+b3+c3 = -3ab(a+b)
\(\Leftrightarrow\) a3+b3+c3 = -3ab.(-c)
\(\Leftrightarrow\) a3+b3+c3 = 3abc (đpcm)